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Preface

The international conferences on Integral Methods in Science and Engineering
(IMSE) are biennial opportunities for academics and other researchers whose
work makes essential use of analytic or numerical integration methods to
discuss their latest results and exchange views on the development of novel
techniques of this type.

The first two conferences in the series, IMSE1985 and IMSE1990, were
hosted by the University of Texas—Arlington. At the latter, the IMSE con-
sortium was created and charged with organizing these conferences under the
guidance of an International Steering Committee. Subsequently, IMSE1993
took place at Tohoku University, Sendai, Japan, IMSE1996 at the University
of Oulu, Finland, IMSE1998 at Michigan Technological University, Houghton,
MI, USA, IMSE2000 in Banff, AB, Canada, IMSE2002 at the University of
Saint—Etienne, France, IMSE2004 at the University of Central Florida, Or-
lando, FL, USA, and IMSE2006 at Niagara Falls, ON, Canada. The IMSE
conferences are now recognized as an important forum where scientists and
engineers working with integral methods express their views about, and inter-
act to extend the practical applicability of, a very elegant and powerful class
of mathematical procedures.

A distinguishing characteristic of all the IMSE meetings is their general
atmosphere—a blend of utmost professionalism and a strong collegial-social
component. IMSE2008, organized at the University of Cantabria, Spain, and
attended by delegates from 27 countries on 5 continents, maintained this tra-
dition, marking another unqualified success in the history of the IMSE con-
sortium. For the smoothness and detail-perfect arrangements throughout the
conference, the participants and the Steering Committee would like to express
their special thanks to the Local Organizing Committee:

M. Eugenia Pérez (Departamento de Mateméatica Aplicada y Ciencias de
la Computacién, ETSI Caminos, Canales y Puertos), Chairman;

Miguel Lobo (Departamento de Mateméticas, Estadistica y Computacion,
Facultad de Ciencias);
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Delfina Gémez (Departamento de Matematicas, Estadistica y Computa-
cién, Facultad de Ciencias).

The Local Organizing Committee and the Steering Committee also wish
to acknowledge the financial support received from the following institutions:

Universidad de Cantabria (in particular, Vicerrectorado de Investigacion
y Transferencia del Conocimiento, Facultad de Ciencias, ETSI Caminos,
Canales y Puertos, Departamento de Matematicas, Estadistica y Computa-
cién, and Departamento de Matemética Aplicada y Ciencias de la Com-
putacion);

Ministerio de Ciencia e Innovaciéon (Ref. MTM2007-30182-E);

Sociedad Regional Cantabra de I+D+i (IDICAN. Ref. 25-2-2007);

i-MATH Consolider (MEC, Ref. C3-0087);

Caja de Burgos;

Consejeria de Cultura, Turismo y Deporte del Gobierno de Cantabria;

Ayuntamiento de Santander;

Sociedad Espaiola de Matematica Aplicada (SeMA).

Last but not least, they would like to express their thanks to MICINN
(MTM2005-07720) for partial support, to Antonio José Gonzélez for his work
on the graphical design of the conference, to the colleagues involved in the
coordination of the monographic sessions, and to all the participants, whose
presence and scientific activity in Santander ensured the success of this meet-
ing.
gThe next IMSE conference will be held in July 2010 in Brighton, UK.
Details concerning this event are posted on the conference web page,

http://www.cmis.brighton.ac.uk/imse2010

This volume contains 2 invited papers and 32 contributed peer-reviewed
papers, arranged in alphabetical order by (first) author’s name. The editors
would like to thank the staff at Birkhduser-Boston for their efficient handling
of the publication process.

Tulsa, Oklahoma, USA Christian Constanda, IMSE Chairman

The International Steering Committee of IMSE:

C. Constanda (University of Tulsa), Chairman

M. Ahues (University of Saint-Etienne)

B. Bodmann (Federal University of Rio Grande do Sul)
I. Chudinovich (University of Tulsa)

H. de Campos Velho (INPE, Sa6 José dos Campos)
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P. Harris (University of Brighton)

A. Largillier (University of Saint-Etienne)

S. Mikhailov (Brunel University)

A. Mioduchowski (University of Alberta)

D. Mitrea (University of Missouri-Columbia)
Z. Nashed (University of Central Florida)

A. Nastase (Rhein.-Westf. Technische Hochschule, Aachen)
M.E. Pérez (University of Cantabria)

S. Potapenko (University of Waterloo)

K. Ruotsalainen (University of Oulu)

S. Seikkala (University of Oulu)

O. Shoham (University of Tulsa)
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1

Error Bounds for L' Galerkin Approximations
of Weakly Singular Integral Operators

M. Ahues,! F.D. d’Almeida,? and R. Fernandes®

! Université de Lyon, Laboratoire de Mathématiques de I’Université de
Saint—Etienne, France; mario.ahues@univ-st-etienne.fr

2 Universidade do Porto, Portugal; falmeida@fe.up.pt

3 Universidade do Minho, Portugal; rosario@math.uminho.pt

1.1 Introduction

From all standard projection approximations of a bounded linear opera-
tor in a Banach space, a general (i.e., not necessarily orthogonal) Galerkin
scheme ([At97] and [ALLO1]) is the simplest one from a computational point
of view. In this chapter, we give an upper bound of the relative error in terms
of the mesh size of the underlying discretization grid on which no regular-
ity assumptions are made. A weakly singular second kind Fredholm integral
equation is used as an application to illustrate the actual sharpness of the
error estimates. As is usual in the case of weakly singular error bounds, the
sharpness of our bound is rather poor compared with practical results.

We consider the space L*([0, 7], C) of complex-valued Lebesgue-integrable
(classes of) functions on [0, 7*]. For z € L*([0,7*],C), define

*

(Tz)(s) ::/ g(|s —t)x(t)dt, se<]0,77], (1.1)

0
where g :]0,00[— R is a weakly singular function at 0 in the following sense:
9(0%) = 00, g € L*([0,00[,R) N C°(]0, 00, R), g > 0, g\, in]0,00[.  (1.2)

It can be checked that Tz € L'([0,7*],C), and that T is compact as an
operator on L!([0,7*],C) (see [ALLO1]). Let z € re(T), the resolvent set of T,
so T — zI is bijective and has a bounded inverse. Since 1" is compact, z # 0.
This implies that, for any f € L'([0,7*],C), the Fredholm integral equation
of the second kind

(T—2D¢ = f (1.3)
has a unique solution ¢ € L([0, 7*], C).
C. Constanda and ML.E. Pérez (eds.), /ntegral Methods in Science and Engineering, 1
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The resolvent operator R(z) := (T —zI)~! allows us to write this solution

as £ = R(2)f.
Concerning the derivative of Tx we have the following theorem proved
in [AAF09]:

Theorem 1. For any x € L*([0,7*],C) such that ' € L*([0,7*],C), Tx is a
differentiable function at all s € 10,7*[, and its derivative is given by

(Tx)'(s) = 2(0)g(s) — (77)g(r" = s) + (T2')(s), s€]0,7"].

1
Since the solution ¢ of (1.3) satisfies £ = Z(T{f — f), we may expect boundary

layers for £ at the end points and at points where f has a discontinuity.
Boundary layers lead us to decompose the interval [0,7*] into subdomains.
Those including the boundary layers will be discretized with finer grids than
the ones used elsewhere.

1.2 Numerical Approximations

Let us consider the operator (1.1) in an arbitrary interval [a,b] and let the
underlying complex Banach space be X := L!(a,b],C).

b
(T'z)(s) := / g(ls —thx(t)dt, sé€a,b], z€X,

where g :]0, +oo[— R satisfies (1.2). We describe the general Galerkin scheme.
To compute a numerical solution ¢,, of the exact solution ¢ of the equation

(T zD)p=f (1.4)

we use a sequence of bounded projections (7,),>1 each one having finite rank,
and the corresponding sequence of operators (77,),>1 given by T;, := m,T'm,
and we assume that re(T") C re(T;,). We replace the exact equation (1.4) with
the approximate problem of solving exactly the following equation for ¢,:

(T = z)pn = mnf. (1.5)

The approximate resolvent R,,(z) := (T}, —2I)~! allows us to write the unique
solution of the approximate equation as ¢, := R,(z)m,f. The second resol-
vent identities,

R, (2) = R(2) = R (2)(T = T,)R(2) = R(2)(T — T,,) R (2),

will be useful in the sequel.
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Proposition 1 (See [ALLO1], [Ch83]). If (m,)n>1 is pointwise convergent
to I, then there exists ng such that

= |z| sup [|[(mn T — 21)7"

n>no

is finite, and there exists a constant o > 0 such that, for large enough n,

all(l = mn)ell < llon =@l <BIT =)l

Theorem 2. For f # 0, the solution of the Galerkin approximation satisfies

llen —oll (L —mn) £
el < (I —m)T + T2 ); (1.6)

for n large enough and any C > sup ||(7,T — zI)71||.

The proof can be found in [AAF09).
Let us consider a general grid G, := (7;)7_ such that

To:=a, Tp ' =0b, hj :==7; —Tj—1 >0, hmax := 1m]agc hj, hmin == 1I<njlgnh

We associate to this grid the local mean functionals e} defined by

and the piecewise constant canonical functions e; given by

)1 forselmg, Tl
¢j(s) { 0 otherwise.

_,are adjoint to one another, these linearly

independent families lead to a sequence of projections with finite rank n:

Since the families (e;)_, and (e;):

n

T @ = Z(w ei)e; forxe X.

»Eg
Jj=1

Recall that the oscillation of x € X is given by

b—h
wi(z,d) := 021}1}26/ |z(s+ h) — z(s)|ds.

Theorem 3. For allxz € X, ||(I —mp)z|| <2 Y wi(x
j=1

’["'j—l""j]’ /
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A proof of this estimate can be found in [AAF09], and a proof of a similar

bound can be found in [AALO9.
Theorem 3 with = f gives a bound on one part of (1.6):

I =m)fll <23 ey, b (L.7)
J:
The following theorem establishes a bound on the other part of (1.6).
Theorem 4. If g satisfies (1.2) then
(I = 7p)T| < 2hmax(g(hmin/2) + g(hmin) — 29(b — a))
Pnax /2 Pinax 3hmax /2
-|-4/g(a)da-|—4/g(a)da-|—4/ g(o)do (1.8)
0 0 0
in the subordinated operator norm.

Proof. If we write the bound of Theorem 3 with the definition of w; and
perform the change of variable 7 = ah;, dT = h;jda, we get

n 1 Tj—ahj
(T = 7o) 322// (s + ahy) — 2(s)| ds da
j=1 0 Jr1j_1

Replacing x with Tz, for all € L!([a,b],C), and changing the order of
the integrals, we can easily prove that

Tj—ah;—t
I = m)Ta| < 2/ // lo(r+ by s Dldrdo fo(0)] di
Tj—ah;—t
< 2l s / / lo([7 +aahy]) — g([7]drdo
t€[a,b] T
Let

t;j—ah;
A;(t) = / /|g(\7’+ah| g(|7])|drda
¢

n
and tj :=7; —t, t € [a,b]. We estimate an upper bound of sup > A;(t).
te(a,b] j=1

This proof is based on the geometry of the underlying discretization grid
and it includes the dependence on the possible subdomains [a, b] of the interval
[0, 7*].

Any t in [a, b] belongs to a certain subinterval of the grid, say [7x—1, 7%] and
it may be located in the second half of it—case (A), or in the first—case (B).

(A) In this case tx_1 < —hy/2 (see Figure 1.1) and we have four subcases for
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-h, -h/2 hJ2 h, t
—t—————t+——+ —t—— f t
ts 0t “tq Tkt Tk Tkn

Fig. 1.1. Location of ¢, ty,—tx—1 and tx_1.

(A1) For all j such that 7; < 731, that is, j < k — 1 (see Figure 1.1),
ti,tj—1,t; — Ozh]‘, and 7 are negative. So —t; < —t; + Oéhj < —tj_1.
As 7 is negative, |7 + ah;| < |7| and since g is a decreasing function,

lg(I7 + ahjl) — g(IT)] = g(I7 + ah;]) — g(|7]) = g(—=7 — ah;) — g(—7).

Replacing in the first term g(—7 — ah;) with a larger value, g(—t; +
ah; — ah;), and in the second term g(—7) with a smaller value,
g(—t;—1), we have a larger value for the integral:

1 tj—ahj
40 < [ [l = o(~t,-)drda
0 tj_l
and enlarging the interval for 7 to [t;_1,t;], we have

A;j(t) < hj(g(=t;) — g(=tj-1)) < hmax(g(—t;) — g(=tj-1)).

Hence,
k—1
Z Aj(t) < hmax(g(_tk—l) - g(_tO)) < hmax(g(hk/2) - g(b — a)),

because ty_1 < —hy /2 implies that —t;_1 > hi/2 and g is a decreasing
function.

(A2) For all j such that 7,1 > 73, i.e., j > k+1, t; and t;_; are positive.
Also, t; — ahj > 7;_1 is positive, 7 is positive, and so is 7 + ah;. As
g is a decreasing function,

lg(I7 + ahj]) — g(I7))] = g(|7]) — g(|7 + ahyl).

Using the same arguments as in the previous case, we get

D A1) < hmax(9(te 1) = 9(tn)) < Amax (9(hmin) — 9(b — a)),
j=k+2

because t; > 0 implies tx+1 > hgyr1 > Amin, and g is a decreasing
function.
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(A3) For the interval [74—1, 7%, Tk—1 + hx/2 <t < 73 and we consider that

l9(I7 + ahkl) — g(I7N)| <lg(I7 + ahg)| + lg(|7])].

We decompose, accordingly, Ay into two integrals:

tr—ahy tr—ahyg
/ / (|7 + ahgl) dea-l—/ / (I])drder.
tr tr

With the change of variable ¢ = 7 + ahy in the first integral, and
enlarging all the intervals of 7 to [tx—1, k], we get

1ty
Apt) < // (o) dada-l—// g(|7])drda
te— 1+Ozhk th—1
hie /2
< //g(|a| Ydoda < 2 // (lo)doda,
t

since 0 <t < hy/2 implies that —hy, < ¢ —hy = tr—1 and & < hy/2.

Hence,
i /2

Anlt) < 2( /0 g(o)do + /0 " g(a)da).

(A4) For the interval [1g, Tg+1], 7 +hi/2 <t < 741. We consider a similar
decomposition of Aj41 into two integrals:

tpy1—ohpq1 tpr1—ahpq1
Apya(t) / / (|7 + ahg41]) deoz-l-/ / g(|))drda.
t t

With the change of variable ¢ = 7 + ahy41 in the first integral, and
enlarging the intervals of 7 to [tg, tp+1], we have

Lot1 k1 —ahgi
Ap(t) < / /t+ h|a| dada-l—/ /t g(|T))drde
ETOQRE 41
tet1 hit1+hi /2
/ / g(lo))doda < 2/ / g(o)doda,
tr o Jo

since 0 < tx and txy1 < hg/2 + hgy1; hence,

A

IN

3hmax/2

Ap41(t) < 2/ g(o)do.

0

(B) The case Tg—1+ hx/2 >t > Tx—1, that is t—1 > —hy/2, gives the same
partial bounds.

So for all cases of t we have
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n

Z A;j(t) < hmax(9(hmin/2) + g(hmin) — 29(b — a))

j=1
hn]aX/Q h]nax 3hn]ax/2
+2/ g(o)do + 2 /g(a)da+2/ g(o)do, (1.9)
J 0O JO JO

and the bound (1.8) follows by considering the supremum of (1.9) when ¢ €
[a,b] and by multiplying it by 2.

1.3 Computational Experiments

We consider the function g(s) = —1In(s/2), s €]0,2], z = 4 and the following
right-hand side function:

-1 ifo<s<1,
f(s)'{ 0 ifl<s<2

In this example we will compute the Galerkin approximate solution with
uniform grids of 501 and 1001 points, respectively.

As we do not know the exact solution, we will take as reference solution
the one obtained with a uniform grid of 4001 nodes, in Figure 1.2, and use
it in the computation of the absolute errors of solutions corresponding to
the two, much coarser, grids built with n = 500 and n = 1000 subintervals,
respectively.

Figure 1.2, the reference solution, and Figure 1.3, the approximate coarser
one, look very similar, and so the error with respect to this reference solution
is plotted in Figure 1.4 for a uniform grid with 501 nodes. In Figure 1.5 we
plot the error corresponding to an approximation with a uniform grid with
1001 nodes.

As we can see, the error reduces by a factor of approximately 2, when we
double the number of subintervals in the grid. We can also see that the error
is larger where the kernel has a logarithmic discontinuity (near 0) and where
the right-hand side function f has a discontinuity (near 1).

Elementary computations and [ALLO1], [AALTO05], and [ALTO01] show
that, in Theorem 2,

0<C< 27—;1112 <163 and (I—m,)f=0,
and so the error bound in Theorem 4 can be computed explicitly as given in
Table 1.1. This table also contains the values of the L'-norm of the relative
error (using the reference solution) and, as expected, it shows that the bound
is somewhat pessimistic, in this example. It also shows that doubling the
number of subintervals, the error bound reduces correspondingly.
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0.1 L L L
0 0.5 1 1.5 2

Fig. 1.2. Reference solution with uniform grid of 4001 nodes.

0.8

0.7f

0.6}

0.5F

0.4

0.3f

0.2

0.1 L L L
0 0.5 1 1.5 2

Fig. 1.3. Approximate solution with uniform grid of 501 nodes.

1.4 Bibliographical Comments and Conclusions

The Galerkin approximation to a compact integral operator is the cheapest
one among projection discretizations (see [At97], [ALLO1], and [Ch83]). The
L' class of functions is the largest space among the Lebesgue ones. Weakly
singular kernels define the most general integral operators among the com-
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Fig. 1.4. Error of a 501-node-uniform-grid solution with respect to the reference
solution.

Table 1.1. L'-norm relative errors in uniform grids.

N | hmax |Error Bound|L'-norm Relative Error
500 |0.004 0.729 0.000736
1000{0.002 0.401 0.000251

pact ones. Hence, the framework of this paper is as general and as weak as
possible in the domain of numerical resolution of Fredholm integral equations
of the second kind. The main theoretical result is Theorem 4, in which a
relative error bound is produced. Other efforts in this sense have been accom-
plished in [AALTO05] and [ALTO01], where the condition of quasi-uniformity is
imposed to the underlying grid, and in [AAL09] where other Banach spaces
and other projection-type discretizations are considered. The investigation of
the existence of possible boundary layers in the solution thus deserving grid
refinements has been studied in [AAL09] and [AAF09]. The numerical exper-
iments presented in this paper are done with uniform grids and show that
for a kernel with a logarithmic singularity and an equation whose right-hand
side is a piecewise constant discontinuous function the Galerkin discretization
studied in this chapter gives significantly better approximations than the ones
expected by theory. The shape of the relative error function shows that the
predicted boundary layers have occurred in practice and that the numerical
solution is less accurate in those subdomains.




10 M. Ahues, F.D. d’Almeida, and R. Fernandes

3

x 10~

Fig. 1.5. Error of a 1001-node-uniform-grid solution with respect to the reference

solution.
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2.1 Formulation of the Problem

By definition, a Nevanlinna class function ¢ € R is holomorphic and has a
nonnegative imaginary part in the half-plane Im z > 0. In this chapter we
also consider Nevanlinna functions which belong to the subclass Rg C R
such that if ¢ (2) € Ro, lim, 00 (¢ (2) /2) = 0, Im z > 0. Then, due to the
Riesz—Herglotz theorem,

o) = / do(t

t—z

~—

, Imz>0, (2.1)

— 00

where o(t) is a nondecreasing function such that [ (1+ t2)71 do(t) < oo.
Consider the mixed Lowner—Nevanlinna problem [Low34, KrNu77, AkhG5,
KaSt66, CuFi9l, CuFi9%, AdTk00, UrTkFC01, AdAITkO03], see also
[AdTk01(a)] and (for the matrix version of the problem) [AdTk01(b)].

Problem 1. Given a set of real numbers (co, ..., c2,), a finite set of points
(t1,...,t,) on the real axis, and a set of complex numbers (ws,...,w,) with
nonnegative imaginary parts, find a function of the Nevanlinna class ¢ € Ry
such that asymptotically, for z — oo inside any angle § < argz < 7w —4§, d > 0,

2n+1

o(z) = — Z ¢r—127" 4o (|z|72n71) (2.2)

possesses continuous boundary values in some vicinities of the points (1, ..., tp)
and
o(ts +i0) =ws, s=1,...,p. (2.3)

Remark 1. Notice that by virtue of the representation (2.1) [Akh65], condi-
tion (2.2) is equivalent to the moment conditions

C. Constanda and ML.E. Pérez (eds.), /ntegral Methods in Science and Engineering, 11
Volume 2: Computational Methods; DOI 10.1007/978-0-8176-4897-8 2,
© Birkhauser Boston, a part of Springer:Science + Business Media, LLC 2010
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/\ t*do(t) = o, k=0,1,...,2n, (2.4)

—o0
for the generating distribution o(t).

Remark 2. The suggested Problem 1 is a mixture of the truncated Hamburger
moment problem [KrNu77, CuFi91, AdTk00] with the Lowner-type interpo-
lation problem in the class of Nevanlinna functions [Low34].

We describe and test numerically an algorithm for finding irrational so-
lutions of this problem. The rational solutions of a similar problem were
discussed in [AdAITkO3]. Errors of such approximations depending on the
number and distribution of the interpolation nodes on the real axis will be
discussed elsewhere.

These kind of problems occur when a distribution density reconstruction
from scarce experimental data is attempted. In other words, we are interested
in the possibility of solving the problem when only a very small number of
moments and constraints (data at the interpolation nodes) is known.

The studies of convergence as the number of moments and/or interpolation
nodes grows are out of the scope of this work. Untruncated moment problems
are solved in the classical theory of moments, see [KrNu77] and [Akh65]. The
behavior of the problem solution when the number of interpolation nodes
grows is treated in [DeDy81].

2.2 The Mixed Problem Solution

2.2.1 Solvability and Contractive Functions

Recall that the truncated Hamburger moments problem is solvable [KrNu77,
CuFi96, AdTkO00] if and only if the block-Hankel matrix (cg41)3 ;- is non-
negative. If, in addition, we exclude from our consideration the nonnegative
block-Hankel matrices like
0 0
( 0 ~ > 7 >0,

which cannot be generated by power moments of nonnegative measures, and if
the set (co, ..., ¢ap ) is positive definite, there exists an infinite set of nonnegative
measures o on the real axis satisfying (2.4).

Let (Dy(t));_, be the finite set of polynomials constructed according to
the formulas
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Co Ccp—1 1
D L b L] !
0o = —, Di(t)= —=—==de . . . . )

Veo VAk-14% S : :

Ck Cop—1  tF
CO ... Ck

A_l =1 y Ao = Co , Ak =det ; k= 1,2, ,’I’L(25)

Ck .. CQk

Polynomials Dy form an orthogonal system with respect to each o-measure
satisfying (2.4). Let

Ey=0, Eg(t) = / %‘?k(s) do(s), k=1,...,n,

be the corresponding set of conjugate polynomials.
Then the formula

o(z) = /OO do(t) En(2)(C(2) +2) — En_a(2)

T2 Da@() 2 Daa(z) mEZO =L
(2.6)

according to the Nevanlinna theorem [KrNu77, UrTkFCO1], establishes a one-
to-one correspondence between the set of all Nevanlinna functions ¢(z) satis-
fying (2.2) and the elements ¢((z) of the subclass Ry.

Notice that the zeros of each orthogonal polynomial Dy/(z) are real and by
virtue of the Schwarz—Christoffel identity [KrNu77]

A,
= ——l S0, n=1,2,...,

V An—QAn
(2.7)

the zeros of D,,_1(z) alternate with the zeros of D, (z) as well as with the
zeros of F,_1(z). Therefore, any function ¢(z) given by the expression on
the right-hand side of (2.6) has a continuous boundary value on the real azxis
if and only if the corresponding Nevanlinna function ¢ € Rg is continuous
in the closed upper half-plane and such that {(z) + z has no joint zeros with
Dn—l(z)'

To meet the constraints (2.3) it suffices to substitute into the right-hand
side of (2.6) any function ((z) € Ry which is continuous in the closed upper
half-plane and satisfies the following conditions:

wsDn—l(ts) + En—l(ts)
wsDn(ts) + En(tS) ’

[1]

D,_1(2)En(2) — Dp(2)Ep_1(2) =

s=1,...,p. (2.8)

Note that by (2.7), Im & = Z,Im wg |ws Dy (ts) + En(ts)|_2 >0,s=1,...p.
Thus, Problem 1 reduces to the following.
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Problem 2. Given a finite number of distinct points {¢1,...,¢, of the real
axis and a set of complex numbers w;,...,w, with positive imaginary parts,
find the set of functions ((z) € R continuous in the closed upper half-plane
which satisfy conditions (2.8).

Each Nevanlinna function ¢(z) in the upper half-plane admits the Cayley
representation

) = it g, (2.9)
where () i
Z)—1

is a holomorphic function on the upper half-plane with contractive values,
e, |0(z)] <1, Im z > 0. The function 6(z) connected with the Nevanlinna
function ¢(z) by the linear fractional transformation (2.10) is continuous in the
closed upper half-plane if ((z) satisfies this condition. On the other hand, the
Nevanlinna function ((z) given as the linear fractional transformation (2.9)
of a function #(z) which is holomorphic on the upper half-plane, continuous
in its closure, and has contractive values, is continuous at the points of the
closed upper half-plane where 6(z) # 1. Therefore, Problem 2 is equivalent to
the following problem for contractive functions.
Let 9B be the set of all contractive functions which are holomorphic on the
upper half-plane and continuous on its closure.

Problem 3. Given a finite number of distinct points 1, ..., ¢, of the real axis
and a set of points A, ..., Ap,

59 B
As = | <1, s=1,.
=i o Al
find a set of functions 0 € B such that
O(ts) =X, s=1,...,p. (2.11)

Remark 3. Problem 3 is a limiting case of the Nevanlinna-Pick problem
[Akh65, KrNu77] with interpolation nodes on the real axis. Its solvability
for any interpolation data Ay, ..., A, inside the unit circle was actually proven
in [KhaTa85]. The point is that the associated Pick matrix is automatically
positive definite for given contractive interpolation values once the interpola-
tion nodes are close enough to the axis; this guarantees that the approximate
Nevanlinna—Pick problem is solvable once the interpolation nodes are close
enough to the real line. Then one applies the Vitali-Montel theorem to take
the limit as the interpolation nodes go to the real line. This implies also that
the Nevanlinna-Pick problem is solvable even if some or all |As| = 1.

We describe below an algorithm of the solution of Problem 3 when all
|As] < 1, which is a simple modification of the Schur algorithm. An alterna-
tive algorithm [AdAITkO03], similar to the Lagrange method of interpolation
theory, can be applied if some or even all |As] = 1.
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2.2.2 Schur Algorithm

Note that a function 6 € B satisfies the condition 6(¢1) = A1, |A\1| < 1, if and
only if it admits the representation

qﬁ(z) + M\

) = e+ 1

where ¢ € B and ¢(¢1) = 0. In the case of the Nevanlinna—Pick problem,
i.e., when t; belongs to the upper half-plane, the function ¢(z) admits the
representation ¢(z) = ((z—t1)/ (2 —11)) x (), where x (2) is an arbitrary
contractive function in the upper half-plane. There is no such simple form for
the contractive function ¢(z) when ¢; € R.

Here we wish to carry out the reconstruction procedure using irrational
functions. To this end, we propose to use the function

t1+1
! 14tz dt
@ (2) =01 (2)exp E/ t_zln|t—t1|m =01 (2)uy (2),
t1—1

with a unique free parameter o € (0, 1). Here 6 is any function from B such
that

1 As— X\
——_, S
uy (s) 1= A s

Such a choice of 61 (z) guarantees the verification of all of the conditions (2.11).
Hence, Problem 3 with p nodes of interpolation on the real axis and strictly
contractive values of the functions to find at these nodes, reduces to the same
problem but with p — 1 nodes of interpolation and modified values at these
nodes given by (2.12). Repeating the above procedure p — 1 times with a
suitable choice of the parameter a and modifying the values of emerging
contractive functions at the remaining points ts11, ..., t, according to (2.12),
permits us to obtain some solution of Problem 3. Observe that contrary to
the Nevanlinna—Pick problem with nodes in the open upper half-plane, our
Problem 3 is always solvable if the values of the function to reconstruct are
contractive at the nodes of interpolation.

Let 651 € B be a contractive function emerging after the s — 1 step in
the course of the Problem 3 solution by the above method, and let )\25*1) =
Os—1(ts), /\go) = \1. It follows from the above arguments that should the initial
parameters Ap, ..., A, be strictly contractive, there exists a set of solutions of
Problem 3 described by the formula

a(z)p(z) + b(2)
c(2)pu(z) +d(z2)’

where the elements of the matrix of the linear fractional transformation (2.13)
aregirrationalfunctionsyeonstructedysas above and j(z) runs the subset of all

0, (t;) = N, = =2, ...p. (2.12)

0(z) = (2.13)
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functions from B satisfying the condition p(t,) = /\]S,p_l). This matrix can be
calculated as

(8%

alz) bz) \ T ug () ALY
( c(2) d(z) ) =11 ( AV (2) 1 ) ’

s=1

where the numbers s in the matrix factors on the right-hand side increase
from left to right.

Observe that the simplest choice for the function p(z) in (2.13) is just
wiz) = )\1(01;—1). Hence, if initial parameters Aj, ..., A, in Problem 3 are strictly
contractive, then among the solutions of this problem there are irrational
functions of the type we consider.

A numerical testing of this representation is given in the next section.

2.3 Numerical Results

To check the quality of the reconstruction technique we suggest, we carried out
an extensive study of the present approach as applied to a number of distri-
bution densities: exp (—t2), exp (—t* + 2t2), exp (—3t* — 5t3 + 32 + 3t + 1),
and exp (—0.16t% — 0.15t° + 0.75t* + 0.5t — 2 — 0.25¢ + 0.1) with the latter
two selected to possess clear extrema and to be unsymmetrical with nonzero
odd-order moments.

Since we try to reconstruct certain nonnegative densities, the solvability
of the moment problem is not an issue. In each case the absolutely continu-
ous nonnegative measure with this density is just one of the solutions of the
moment problem. We use a finite, very small number of moments, which can
be easily estimated numerically, i.e., we want to solve the truncated problem
which, since the sought measure has a nonzero density, has infinitely many
solutions.

Remark 4. Notice that earlier [AdAITk03] we tested the numerical viability
of an algorithm of reconstruction (of the densities 1 and 2) using the moment
technique without local constraints. It turned out that one needed to know the
values of hundreds of power moments to obtain some acceptable agreement
between the numerically generated density and the one whose moments were
used. It is clear that such an approach is of no practical importance.

To apply the Schur-like algorithm described above, one has to know not
only the values of some power moments of the distribution density f (¢) under
investigation,

oo
ck:/ tkf(t)dt7 k=0,1,....2n, n=12,...,

but also the values of the Nevanlinna function,
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ws = ¢ (ts) = PV. /_OO f(i)ff

+ainf(ts)

at the set of points (¢1,....t,) C R.

In all four cases we consider, the latter principal value integrals were com-
puted numerically and the sets of orthogonal polynomials (2.5) were calculated
directly, while the conjugate polynomials were generated using the recurrence
relations stemming from the Schwarz—Christoffel identity (2.7).

To find the value of the parameter o € (0,1) of the auxiliary function

ts+1
Q@ 1+tz dt
us (z) = exp g t_zln|t—ts|m . s=1L2,...,p,
to—1

we made use of the Shannon entropy [TkUr99]

+oo
&(a) = - / Blae t) In (4 e £)) dt,

where the density ¢(«,t) is the one reconstructed within the algorithm, i.e.,
it is the imaginary part (divided by =) of the Nevanlinna model function
obtained by our algorithm. The density ¥ (a, t) has no real poles and is positive
over the whole real axis, hence it is quite easy to solve the maximization
procedure equation: d&(a)/da = 0.

Our numerical results can be summarized in the following way. In all
figures the dashed lines correspond to the original distributions. Some av-
eraging procedure was applied to minimize the influence of the choice of
the initial point. Precisely, first the lowest of the points of interpolation,
t1,...tp, was chosen as the initial point (the case 123) and then the points
were chosen in the inverse order, in each case a certain value of a labeled
(L---p) or (p---1) was obtained and, finally, we took the average of these
two groups of data and plotted the figure. In Figure 2.1 we display the
Gauss distribution reconstructed using p = 3 points and n = 2 (which
are 3 nonzero moments in this case). Here we have a3 = 0.793437 and
ago1 = 0.7965. Figure 2.2 corresponds to f(t) = exp (—t4+2t2) p =3
and n = 2 ); we have ajo3 = 0.526876, aga; = 0.524844. In Figure 2.3
we display our results for f(t) = exp (—3t4 — 5t3 4 %t2 + 3t + 1) obtained
with p = 3 and n = 2 (5 nonzero moments in this case) and with a3 =
0.264258, ago; = 0.3675. Figures 2.4 and 2.5 correspond to the function
f(t) = exp (—0.16t° — 0.15t° + 0.75¢* + 0.5¢3 — 2 — 0.25¢ + 0.1) (the first one
with p = 3 and n = 2 (5 moments), and the second one with p=3 and n =1
(3 moments)). They were obtained choosing a;j2345 = 0.650153 and as4321 =
0.69748 in the first case, and 2345 = 0.622827 and ais4321 = 0.613504 in the
second one.
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Fig. 2.1. An example of irrational reconstruction (solid line) of a symmetric distri-
bution density (dashed line) by 3 local constraints and 5 (3 nonzero) power moments.

25

05

Fig. 2.2. Another example of irrational reconstruction (solid line) of a symmetric
distribution density (dashed line) by 3 local constraints and 5 (3 nonzero) power
moments.
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Fig. 2.4. An example of irrational reconstruction (solid line) of an asymmetric
distribution density (dashed line) by 3 local constraints and 5 power moments.
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Fig. 2.5. Another example of irrational reconstruction (solid line) of an asymmetric
distribution density (dashed line) by 3 local constraints and only 3 power moments.

2.4 Conclusions

An algorithm is presented which permits us to obtain, at least in the cases we
consider, a reasonable agreement between the selected densities and their irra-
tional counterparts reconstructed by a few integral characteristics, the power
moments, and the local constraints. Further applicability and convergence
properties of the approach are to be considered elsewhere.

Acknowledgement. Valuable discussions with V. Adamyan and P. Kurasov are grate-
fully acknowldeged.
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3.1 The Environmental Problem

Eutrophication of lakes, reservoirs, streams, and coastal areas is one of the
most widespread environmental problems of large water bodies. Eutrophi-
cation consists of unnatural enrichment with two plant nutrients: nitrogen
and phosphorus. This overnutrification causes undesirable changes in water
resources: excessive production of algae, deterioration of water quality and
availability, fish kills, health hazards for humans, etc. Controlling the eu-
trophication is important in order to mitigate and remedy the problem.

The basic idea of a bioreactor consists holding up hypernutrified water
(rich, for instance, in nitrogen) in large tanks where we add a certain quantity
of phytoplankton, that we let freely grow to absorb nitrogen from the water.
In the particular case analyzed in this chapter we have considered only two
large shallow tanks with the same capacities (but possibly different geome-
tries). Water rich in nitrogen fills the first tank (21, where we add a quantity
p* of phytoplankton (which we let grow for a permanence time T') to drop,
nitrogen level down to a desired threshold. We are also interested in obtaining
a certain quantity of organic detritus (very desirable for use as agricultural
fertilizer) in this first tank. Once we reach the desired levels of nitrogen and
organic detritus (settled in the bottom of the tank, and then reclaimed for
agricultural use), we drain this first tank and pass water to the second tank
(25, where the same operation is repeated, by adding a new amount p? of
phytoplankton. Water leaving this second fermentation tank after a time pe-
riod T2 will usually be poor in nitrogen, but rich in detritus (settled in the
bottom) and phytoplankton (recovered from a final filtering). At this point,
we are interested (both for economical and ecological reasons) in minimizing
this final quantity of phytoplankton. Thus, the optimal control problem con-
sists of finding the quantities (p!, p?) of phytoplankton that we must add to
each tank during the respective times so that nitrogen levels are lower than
the maximum thresholds and the detritus levels are higher than the minimum

C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 21
Volume 2: Computational Methods, DOT 10.1007/978-0-8176-4897-8 3,
© Birkhduser Boston, a part of SpringeriScience + Business Media, LLC 2010
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thresholds, and in such a way that the final phytoplankton concentration is
as reduced as possible.

From a mathematical viewpoint, this problem can be formulated as an
optimal control problem with state-control constraints, where the controls
(p', p?) are the quantities of phytoplankton added at each tank, the state
variables are the concentrations of representative species, the objective func-
tion to be minimized is the phytoplankton concentration of water leaving the
second tank, the state constraints stand for the thresholds required for ni-
trogen and detritus concentrations, and the control constraints are related to
technological bounds. A detailed formulation of the problem is presented in
the next section, along with results for existence and characterization of solu-
tions. Finally, a numerical algorithm is proposed for computing the solution
of the state system, and is applied to a realistic example.

3.2 The Analytical Problem

Recent mathematical models for the simulation of a eutrophication process are
based in systems of partial differential equations with a high complexity due to
the large variety of internal phenomena that they include. In this chapter we
consider a realistic model with four biological variables involved (the meaning
of the biochemical interaction terms can be found, for instance, in [Ca76]

r [DCIO1]). So, we consider the state u = (u',u? u3 u*), where u'(t,z)
stands for a generic nutrient concentration (for instance, nitrogen), u?(t, z)
for phytoplankton concentration, u?(¢, z) for zooplankton concentration, and
ut(t,z) for organic detritus concentration.

Interaction of these four species into a given still water domain 2 C R?
(with a smooth enough boundary 942) and along a time interval I = (0,7") can
be described by the following system of coupled partial differential equations
for diffusion-reaction systems with Michaelis—-Menten kinetics:

S =V (Vu! )+CncLK T cu? — CpeKyu? — CnCKTdOe 2044 — gl
2

aait (MQVUQ) KN+u1u +Ku +Kmfu +K2Kp+u2 3:.92
3 u2

88_ut4 (M?’VU?)) Crs zKFJrUzu + Kppou? —ga

%_v (,LL4VU) mfu _szu +K»,~d@e 20 4:947

in @ = I x £2, with suitable boundary conditions on X' = I x 92 and ini-
tial conditions in {2, and where 6(¢,z) is the water temperature (in degrees
Celsius), L(t,z) the luminosity function (related to incident light intensity
and phytoplankton growth rate), w;, i =1,...,4, the diffusion coefficients of
each species, Cj,. the nitrogen-carbon stoichiometric relation, Cy, the graz-
ing efficiency factor, © the detritus regeneration thermic constant, Ky and
K the nitrogen and phytoplankton half-saturation constants, K, and K,,,
the phytoplankton and zooplankton death rates (including predation), K,
thesdetritusyregenerationsratesdGathe phytoplankton endogenous respiration
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rate, and K, the zooplankton predation (grazing). The existence and unique-
ness of solutions for this system have been previously obtained by the authors
in the recently published paper [AFMO09].

To present a simpler expression for the system, we consider the mapping
A= (A AZ A3 AY) R, x 2 x Ri — R4, given by

—Che [L(t7 x)#iu]lﬁ _ KTUQ} + CncKrdQG(t,x)72Ou4

__ut 2 2 2 u? 3
A(t,;l;’u) = |:L(t,CL‘)KN+u]u _Kr'g } _Kmfu —szu
szszU?) - K7an3

K pu? 4 Kpppu® — K, 0062 =204
Thus, the eutrophication system can be written in the following equivalent
way:
ou’
ot

With this notation in mind we can formulate the bioreactor control prob-
lem with the following items.

— V- (uiVu') = A'(t,z,u) + ¢ inQ, for i=1,....4.  (3.1)

e (Controls: As already mentioned, we will control the system by means of
two design variables: the quantities p?(t,z), j = 1,2, of phytoplankton
added in the tank (2; along the time intervals I; = (0,77).

e State systems: We consider two state systems giving the concentrations of
nitrogen-phytoplankton-zooplankton-organic detritus in each tank. Since
both tanks are isolated, no transference for any of the four species is con-
sidered through the boundaries (i.e., Neumann boundary conditions are
assumed to be null). Both systems will be coupled by means of the initial-
final conditions: when water is passed from the first tank to the second
one, it is natural to assume that water is mixed up, and this is the reason
for considering the initial conditions for the concentrations inside the sec-
ond tank as given by the corresponding averaged final concentrations in
the first tank. These two state systems are given by

—  First tank §21: The state variables for the first tank will be denoted
ut = (ubl u?t ut utl) with ul! (nitrogen), u?! (phytoplankton),
u®! (zooplankton), and u™! (organic detritus). The permanence time
of water inside this first tank will be T, and the initial concentrations
will be given by u} = (ué"l, ug’l, ug’l,ué’l). Thus, for Q1 = I; x £2; and
Xy =11 x 021, we have the system, for i =1,...,4,

G v (wiVubl) = A(t,z,ul) + d2;p°  in Qr,

ot 4
Qe —0 on Xy, (32)
utH(0) = up’ in (2,

where §;; denotes the Kronecker delta, that is, §;; = 1 if j = ¢, and
055 = 0 otherwise.
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—  Second tank (25 : The state variables for the second tank will be denoted
u? = (ub?,u?? 2 u*?) with ul? (nitrogen), u?>? (phytoplankton),
u®? (zooplankton), and u*? (organic detritus). The permanence time
of water inside this second tank will be T2. Thus, for Qs = Iy x 25
and Yy = IQ X 0829, we have, for 1 =1,...,4,

-V (,u,Vui’z) = Ai(t,:v, 112) + (Szipz in Qo,
05’2 =0 on S, (3.3)
ut*(0) = Mi(a(T")) in {2,

meas( 1)

where M; = (M}, M?, M3}, M}), for j = 1,2, are the functionals, de-
fined from [Ll(() )4 to ]R4 given by

M;(v7) = fQJ 03I dr

(Note here that, since detritus settle before water passes to the second
tank, the initial detritus concentration u*?2(0), i.e., the fourth compo-
nent of M (u'(7")), is considered null.)
o Objective function: Since we are interested in minimizing the final phy-
toplankton concentration of water leaving the second tank, we are led to
consider the cost functional J given by

1
J12=—/ 22(T%)da. 3.4
(p'5p7) meas(%) o, " (T7)da (3-4)
e State constraints: The final nitrogen concentration in each tank must be
lower than a given threshold, and the final organic detritus concentration in
each tank must be greater than another given threshold. These constraints
translate into the relations given by B = (B!, B2, B®, B*), where

B;(pi’ pz) - meas(!h) f-(h ( :)d.’E < o1
B3(p17 p2) = meas(QQ) -02 (Tl) . < 92 (35)
B (P 4 ): meas(.Q1) fQ1 (T )dx > 01,
B4(p1,p2) meas(.(lz) 02 (T2)dac > 92a

for certain given values oy, o3, 61, 63 > 0.

e Control constraints: Finally, for technological reasons, the quantities p',
p? of phytoplankton added to the tanks must be nonnegative and bounded
by a maximal admissible value C' > 0, that is, they must lie in the set

Ua = {(p",p°) € L*(Q1) x L*(Q2) :
0< pJ(t,m) <C ae. (t,.’E) € Qja Jj= 1)2}’

which is a closed, bounded, convex, and nonempty subset of L?(Q1) X
2 (N

Ol LE Zyl_i.lbl
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Thus, the formulation of the optimal control problem, denoted by (P), will
be the following:

inf {J(p', p*) s.t. (p', p°) € Uyq and (u',u?) satisfies (3.2)-(3.3), and (3.5) }.

As proved by the authors in [AFMO09], the eutrophication system (3.1)
admits a solution under nonsmooth hypotheses. To be exact, if we assume
that the fluid temperature § € L?(Q) satisfies the boundedness condition
0 <0(t,x) < M ae. (t,z) € Q, then the eutrophication system admits a
unique solution u € WH2:2(I; [HY(2)]*, [H*(2)']*) N [L>=(Q)]*, where

WEPHLV, V) = {v e LX(LV) % € LUV},

for any Banach space V and for 1 < p,q < oo. Moreover, this solution u
is nonnegative and bounded (in the previous space norm) by a value only
depending on time 7', second member g = (g1, g%, g%, g*), and initial-boundary
values.

We say that (p!,p?) € U,q is a feasible control for problem (P) if the
associated state (u', u?), solution of (3.2)-(3.3), satisfies the constraints (3.5).
Then, by standard minimizing sequences arguments, and taking into account
that the solutions of the state systems are bounded and that U,q is weakly
closed with the topology of L?(Q1) x L?(Q2), we can prove the following
existence result.

Theorem 1. Let us assume that the set of feasible controls is nonempty. Let
u} € [L>=(2)]* be such that 0 < ué’l(z) <M aexech, i=1,...,4. Then,
there exist elements (p*, p?, 0, 0%) € Uygx (WE22(Iy; [HY (1)), [H(£20)]1)N
[L(QuN) < (W22 (Ios [H (22)]%, [H' (£22)'11)N[L™(Q2)]*) such that (p*, p?)
is a solution of the control problem (P) with associated state (u',u?).

Finally, by classical adjoint state techniques, we can also derive the follow-
ing necessary first order optimality condition, which characterizes the optimal
solutions of the control problem (P).

Theorem 2. Let (p', p?) € Uyq be a solution of the control problem (P) with
associated state (', u?) € (WH22(I;[H(£20)]%, [H (£21)1%) N [L(Q1)]*) %
(WL22(Lo; [HY($22)]%, [HY(22)']*) N [L>=(Q2)]*). Then, there exist elements
v >0 and A = (A A2 03,01 € R* such that

(NB(PY %) —phme >0, Y € [0,01] %[0, 09] X [01,00) X [0, 00) C R* (3.6)

and

2
Z/ (P — )2 dadt >0, V(o' p?) € Usa, (3.7)
i=17Q

withp? = (p"9,p*7, p>7,p*7) € WH22(L;; [H' (92;)]4, [H' (£2;) 1)N[L(Q)]*,
j = 1,2, the solutions of the following coupled linear adjoint systems, for
PR
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( 0.2 . _ ‘
_a%t - v : (/vLiVPl’z) = [DuA(t7 Z, uz)sz]i m Qz,
857; =0 - on Xy,
O meaz)(QQ) (38)
p*(T7) = meaz)(%) + 0 in $29,
A
0 e ()
i1 ) _ '
_?Iét — V- (uVp) = [DuA(t,z,u))TpY];  in Q1.
% =0 on X1,
n K
measo(ﬂl) (39)
pl(Tl) = measl(QI)Mz(pQ(O)) + 0 mn 01.
A3
meas(£2;)

3.3 The Numerical Problem

This final section is devoted to the computation of a numerical approxima-
tion to the unique (nonnegative and bounded) solution of the eutrophication
system (3.1) in @ = (0,7) x 2. In order to obtain it, we will use a first or-
der implicit time discretization (based on a finite difference scheme) and a
standard space discretization based on the Lagrange finite element method.

3.3.1 The Time Semi-Discretization

For the time semi-discretization we will consider a finite set of discrete times
{to}N7, € [0,T)] such that to = 0, ty, = T, and t, —t,_; = At, ¥n =
1,..., Np, with a time step At > 0. Associated to the above set we construct

the following time semi-discretization of the state system (3.1), where a =
1 .

AL > 0:

e ug € [L>®(N)]* such that 0 < wul(z) < M ae. z € 2,i=1,...,4, given.

e Vn =1,...,Np, u, € [HY(2)]* such that 0 < u!(z) < C(a, M) a.e.
x € 2,i=1,...,4, solution of the steady state problem:

oun _ () on 012,

{ ou, — V- (4,Vu,) = A(t,,z,u,) + au,—1 +g(t,) in £,
on
(3.10)

where A, is a diagonal matrix with diagonal elements (j1, 2, p13, fia).
By using fixed point techniques, we can easily prove that under the as-
sumption on «,




3 A Three-Dimensional Eutrophication Model 27

there exists a constant C(a, M )—depending only on « and M—such that
the unique solution u,, € [H(£2)]* of (3.10) is nonnegative and bounded by
Cla, M).

To deal with the nonlinear part A(t,,z,u,) of the semi-discretized sys-
tem (3.10), we propose for each discrete time n = 1,..., Ny a fixed point
scheme of the following type.

4

For a given u, ) = (ul,ul,ul,up) € [H'(2)*, we compute U, jt1 =
(U5 R g, Up g up, ) € [HY(£2)]* obtained by the following algorithm.

1) First we compute uj,, € H'({2) as the solution of the boundary value
problem:

(a+ K, +Kmf)uk+1 \ (N2vuk+1)
+ szu,ﬁ_l quk-i-l —g in Q,

aua’j:rl =0 on 012
2) Next we compute uj,, € H'(§2) as the solution of the problem:

(a+ Kpz)ui g — 2V (:“3vuk+1)
U, .
_ szszukH k41— g m .Q,

82’“;1 =0 on 9.
3) Then we compute uj,, € H'(£2) as the solution of the problem:

(a+ K.q0' )l — V- (uaVup, )

_ 2 3 4 .
L= mfUyy + Kmzug, +9 in 2,
o
% =0 on 0Of).

4) Finally we compute uj_, € H'(£2) as the solution of the problem:

aup , — V- (u1Vuk +1) + Crnel K“k; rup
= Ch.K, “k+1 + Cpo K g0?— 2Oukﬂ +g' in 0,
4—_‘9’(‘92 =0 on 0f2.

Again, under assumption (3.11) on «, this algorithm will be monotonic
and convergent for any initial iterate that is nonnegative and bounded by
Cla, M).

Several alternative techniques have also been tried for the treatment of
the nonlinear term (fully explicit formulation of the second terms, defect cor-
rection principle, and so on), but all of them have shown a worse behavior in
the numerical examples.
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3.3.2 The Space Discretization

For the fully discretized formulation of the eutrophication system (3.1)—and
due to the fact that we have used a first order time semi-discretization—we
only present here a standard Pj-Lagrange finite element method (for details
see, for instance, the classical monograph [ZT00]). However, Q;-Lagrange and
P5-Lagrange finite elements have also been tested in the numerical examples
with very satisfactory results.

Then, for the domain (2 (assumed to be polygonal), we consider a family
of regular meshes {7, }r—0. Associated to each mesh T, we consider the finite-
dimensional vector subspace V}, C H'(§2) given by

Vi ={un €C%(2) : up, € P(T), VT € Tp.},
where P;(T') denotes the space of degree one polynomials on 7.

If we denote N}, the number of nodes in the mesh Ty, {b; } ", the set of

nodes of the mesh 7, and {qbl} . the standard basis of the space V}, (i.e.,

¢i(bj) = 654, Vi, j =1,...,Np), we have that any element uj, € V), admits a

unique representation in the basis {¢z}]\ﬁl in the following way:

up = Zuh = [un] - [¢], (3.12)

with vectors [up] = (un(b1),...,un(bn,)) and [@] = (¢1,...,¢nN,). So, if we
define the following matrices and vectors:

[M}) € RNw*Nn [Mhp)i; = f(z pigpjda,
[R] € RNwXNu o [Ry]; = = [, V- Vo¢;dz,
[A} (K, up,vp)] € RNeXNe o (AL (K, uh,vh)]w =/, K+uh¢1¢de,
[AR (K, up, vp)] € RVwXNe 2 A h(K un,vn)lij = Jo Ligir didjda,
[BEleRNn, k=1,...,4 (B ng ¢;dx,
for 4,7 =1,..., Ny, we can obtain the following full discretization of the fixed

point algorithm introduced in the previous subsection.
For a given up pnp = (u}zyk,ui’k,u%’k,ui’k) € [Vi]*, compute up ki1 =
(Uh ko1 Wi o> Wi g1 u‘,ll’kﬂ) € [Vi]* obtained by the following algorithm.

1) First we compute u%k 41 € Vi as the solution of the linear system:

{(+ Ky + K p) [Mp] + po[ Ri] + I AL (Kp, uj, g, uf )]
— (AR (KN, o )]} o] = [BR).
2) Next we compute u%k 41 € Vi as the solution of the linear system:

{(a+ Kopz) [Mp] + p3[Rp)
— CpK.[A} (K ui,k+1au%,k+1)]}[uz,k+1] = [Bl?;]'

Ol LE Zyl_i.lbl
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3) Then we compute u;ﬁ’ k11 € Vi as the solution of the linear system:

{(a+ K.a0° ) [Mp] + pa[ Ry} 1]
= Ky [My][uf, 1] + Kz [M][ud 1] + [Bi.

4) Finally we compute u,ll k41 € Vi as the solution of the linear system:

{a[Mp] + pa [Ru] + Cne A (K g, g, uh o)t 1]
= Cpc K [Mp] [ui,k+1] + CncK’rdQQ_20 [Mp] [u;lz,k+1] + [Bilz]

Once more, under assumption (3.11) on «, the above algorithm will be
convergent. In particular, the constraint on « (or, equivalently, the corre-
sponding constraint on At) ensures the positive definiteness of the matrices
in the previous linear systems and, consequently, their solvability.

3.3.3 Numerical Example

In this final subsection we present the numerical results obtained for a real-
istic example consisting of two tanks: the first tank (2; is a shallow tank of
dimensions 16 m x 16m x 4m, and the second one {25 is a deeper tank of
dimensions 8 m x 8 m x 16 m. (We must remark that both tanks have different
sizes, but the same capacities: 1024 m®.) Permanence times will be the same
for both tanks: T' = T2 = 200 hours.

15

Fig. 3.1. Averaged concentrations of nitrogen (N), phytoplankton (P), zooplankton
(Z), and organic detritus (D) in the first tank (2.
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The averaged concentrations (in mg/1) of the four species in both tanks
are shown in Figures 3.1 and 3.2, obtained with our own code (completely
developed by the authors in MATLAB and C++).

15
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Fig. 3.2. Averaged concentrations of nitrogen (N), phytoplankton (P), zooplank-
ton (Z), and organic detritus (D) in the second tank (2.

In the first tank (2; nitrogen decreases as phytoplankton increases (showing
the typical oscillatory behavior due to cyclical night/day luminosity variations
during the approximately 8-day period). A moderate increase in zooplankton
(natural predator of phytoplankton) and organic detritus (produced by its
death) can also be observed. We mention here that the final concentrations in
the first tank are used as initial concentrations in the second tank (except for
the organic detritus that is recovered from the water; its initial concentration
will be considered null). The deeper shape of the second tank (2;—carrying
a limitation on light availability—and the low level of nitrogen promote a
decrease in phytoplankton concentration. Phytoplankton death causes an in-
crease in organic detritus from zero up to a maximum level, until it begins to
decrease due to decomposition (re-injecting nitrogen into the water column).
Finally, in this second tank, we can see how the zooplankton concentration
keeps growing, but the nitrogen level remains controlled.
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4.1 Introduction

Analytical solutions of equations are of fundamental importance in under-
standing and describing physical phenomena, since they are able to take into
account all the parameters of a problem and investigate their influence. In a
recent work, [Bus07] reported an analytical solution for the stationary two-
dimensional advection—diffusion equation with Fickian closure by the Gener-
alized Integral Laplace Transform Technique (GILTT). The main idea of this
method consists of: construction of an auxiliary Sturm—Liouville problem, ex-
pansion of the contaminant concentration in a series in terms of the obtained
eigenfunctions, replacement of the expansion in the original equation, and fi-
nally after taking moments, resulting a set of ordinary differential equations
which are then solved analytically by the Laplace transform technique.

In this chapter, pursuing the task of searching analytical solutions, we
start by presenting an analytical solution for the transient two-dimensional
advection—diffusion equation with non-Fickian closure in Cartesian geometry
by the GILTT method. We specialize the application of this methodology to
the simulation of pollutant dispersion in the planetary boundary layer (PBL)
under low wind conditions. We also present numerical results and comparison
with experimental data.
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4.2 The Analytical Solution

The advection—diffusion equation of air pollution in the atmosphere is es-
sentially a statement of conservation of a suspended material, and it can be
written as

oc de aec aec o'c  ow'ed  ow'd

in which ¢ denotes the mean concentration of a passive contaminant (g/m?)
and u, U and w are the Cartesian components of the mean wind (m/s) in the
directions z (— x< z <x), y (— x< y <x), and z (0 < z < h). The terms
u'c/, V', w'c’ are, respectively, the contaminant turbulent fluxes (g/sm?) in
the longitudinal, lateral, and vertical directions and S is the source term.

One of the most widely used closures for equation (4.1) is based on the
gradient transport hypothesis which, by analogy with molecular diffusion,
assumes that turbulence causes a net movement of material down the gradient
of material concentration at a rate which is proportional to the magnitude of
the gradient:

@
0z’

oc — ]
uc =—-K, —; vd=-K, —; v'd=-K,
€z Y

where K, Ky, and K, are the Cartesian components of the turbulent dif-
fusion coefficients (m?/s). In the first-order closure of the turbulence all the
information of the turbulence complexity is contained in the eddy diffusivity
(see the work [Bus07] for the solution of (4.1) with first-order closure).

To take into account the nonhomogeneous character of the turbulence in
the convective boundary layer (CBL), [Ert42] and [Dea66] proposed to modify
the usual application of the flux gradient in the K-theory approximation in

such a way that
w'd = —K o _ ol (4.2)
z 82’ bl

where vy represents the countergradient term. In the literature we can find
many parameterizations for v and, in this chapter, without losing generality,
we used that proposed in [Van01]:

Skgw,le 0 0 - _ @
<1+< 5 >8z+T8t)wc_ K, (4.3)

where Sy, is the skewness, o, is the vertical turbulent velocity variance (m/s),
T;, is the vertical Lagrangian time scale (s) and 7 is the relaxation time (s).
Using equations (4.2) and (4.3), the turbulence closure problem was solved
without obeying Fick’s law, which is called non-Fickian closure. The non-
Fickian closure allows the investigation of more energy eddies at different
heights and. the effect of the asymmetric transport in the computation of
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the pollutant concentration, considering in a more complete way the complex
structure of the turbulent dispersion.

Considering the Eulerian framework for a Cartesian coordinate system in
which the z-direction coincides with that of the average wind and substitut-
ing the above equations in (4.1), we write the crosswind integrated transient
advection—diffusion equation in the form

oc(w, z,t) _Oc(x,z,t) _Oc(x,z,t) 0 Oc(x, z,t)
o " ar " e e\ e
0 Oc(x, z,t) 0 dc(x, z, t) 0 [ _0Oc(z,z,t)
o <K BE ) 9z <ﬂ ot 5: "z
0 dc(x, 2, t) c(x,z,t) 0 [ _Oc(w, z,t)
S <ﬂ 92 ) T o ot \"" o

0 [ _0c(x,z,t) 0 0 Oc(x, z,t)
T (”"—az ) "o (ﬁ% (Kz—ax ))
0 0 Oc(x, z,t)
+ E (T@ <K:v—8x )) 5 (4.4)

with 8 = 0.5Sk0,T;, . Equation (4.4) is subjected to the null flux concen-
tration at the ground and at the top of the boundary layer as well initial
condition we(0, z,t) = Q6(z— H) and % = 0 far away from the source.
(@ is the emission rate (g/s), h the height of the CBL (m), H, the height of
the source (m), and ¢ represents the Dirac delta function.

To solve problem (4.4), we apply the Laplace transformation with respect
to the time variable:

R e e A
+% <K286(g,zz,7“)> _% <ﬁﬂ86(g;:z,r)>
- % (8rC(z, 2,1)) — % <5w%> — 712 0(z, 2,7)
_Taé(g;z,r) o a% <K136(g;z,r)>
o Lnnn) D (9 <Kx—8agf”"))) @)

where C(z,z,7) = £{c(x, z,t);t — r} and 7 is complex. Remember that in
this chapter the terms u and w are functions of height z, and K, and K, are
also functions of distance x.




36 D. Buske, M.T. Vilhena, D. Moreira, and T. Tirabassi

N

E(x’zaT) = Zﬁ(l‘,’l‘) Cn(z)a (4'6>

n=0

where (,,(z) are the eigenfunctions of the associated Sturm—Liouville problem
(Cn(2) = cos(Apz) where A\, = nm/h (n =0,1,2,...) are the eigenvalues) and
the dependent variable of the problem ¢, (x,r) needs to be encountered.

By substituting equation (4.6) in (4.5) and taking moments, we obtain
an ordinary differential equation with variable coefficients (because the eddy
diffusivity depends on the x and z variables). Taking an average on the x
variable (performing a stepwise approximation), we can rewrite the resultant
equation in matrix form as

Y'x,r)+ F-Y'(z,r)+ G -Y(x,7r) =0, (4.7)

where Y (z,r) is the column vector whose components are {c,(z,7)}. The
matrix F' is defined as F = Bl_lBg and the matrix G as G = B1_1B3. The
entries of matrices By, Bs, and B3 are, respectively, given by

h h
(b ) = /0 K, Gul2) G2z + /0 BK, C() Cn(2)d=

h h
+ /0 (BEL) Cu(2) G (2)dz + 77 /0 K, Gul2) Gnl(2)dz,

h h
(b — — / Ta(2) G (2)dz — / BT (2) Gml(2)dz
h h
- / (BT) Cu(2) G (2)dz + / K Co(2) G (2)d2
0 0
h h
+ / BE!, (=) Cm(2)dz + / (BELY (a(2) Cm(2)d

h h
- u n m d Kg,g n m d7
T’r’/o U Cn(2) Gm(2) Z+TT/O Cn(2) Cm(2)dz

and
h h
_ 1ol 32
(bg)n,m—/0 K, (%) (m(z)dz )\n/o K, (u(2)Cm(2)dz
h h
[ W@ 6z = [ ) Gl
0 0

- /OhﬂC;(Z) (m(2)dz —r /Oh B Cn(2) Cm(2)dz

—7r? /OhCn(Z) Cn(2)dz + X2 /Ohﬂwgn(z) Cm(2)dz
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Applying the standard procedure of order reduction to equation (4.7), we
obtain the result
Z'"(z,r) + HZ(xz,7) =0, (4.8)

subjected to the boundary conditions

Z(0,7) = Q Cn(H)A™Y and  Z(Ly,r) =0
T
where A™! is the inverse of matrix A with entries a,, ., = Oh wCn(Z) (m(2)d2.

Following the procedure of [Bus07], one obtains the following solution for
problem (4.8):

Z(x,r) = X exp(Dx) X ' Z(0) = M(z,7)¢,

where M (x,7) = X exp(Dz) and ¢ = X~1Z(0). X is the matrix of eigen-
vectors of matrix H and exp(Dz) is the diagonal matrix of the respective
eigenvalues. For more details see the work [Mor08].

Once the coefficients of the series solution are determined, we are in po-

sition to invert the Laplace Transform solution using the fixed Talbot algo-
rithm [VaAb04]:

M*—1
[%%, z,r)e + ) Rele 0 (x, 2, 5(6k)) (1 +io(61))],
k=1

Tx

M*

c(x, z,t) =

(4.9)
where S(0) = r.f(cot0 + i), —7 < 0 < 7, 0(0x) = O + (6x cot O, — 1) cot O,
0 = km/M*, and 7, = 2M*/5¢ is a parameter based on numerical experi-
ments. The control of the round-off error in the computation of (4.9) is spec-
ified by the accuracy requirement, i.e., the number of decimal digits accu-
racy (M).

4.3 Experimental Data and Turbulent Parameterization

In order to illustrate the aptness of the discussed formulation to simulate
pollutant contaminant dispersion in the atmosphere, we evaluate the perfor-
mance of the discussed solution against experimental ground-level concentra-
tion. The data used to evaluate the performance of the model in unstable
conditions were constituted by a series of diffusion tests conducted at the In-
dian Institute of Technology (IIT Delhi) for surface releases, with light winds
over flat, even terrain. The tracer used was SFy released from a height of 1 m
and observed near the ground (0.5 m). In all cases the wind velocity was less
than 2 ms™! at a height of 15 m. For more details see the work [Sha96].

To compare the results obtained with the GILTT with the experimental
data the time-dependent three-dimensional solution is written in terms of the
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time-dependent two-dimensional solution (obtained in Section 4.2) multiplied
by the Gaussian function in the y-direction as

o(—v?/20)

Varo,

where o, is the lateral dispersion and is expressed as [Deg98]

(wy,zt)—ca:zt)

ol 021 [ dn’

h—g = T A Sln2(2, 26¢1/3X*n/)m,
where X* = zw, /uh is the nondimensional distance, h the top of the con-
vective boundary layer, n’ is the nondimensional frequency, w, the convective
velocity scale, and ¥ = 0.4 is the molecular dissipation of turbulent velocity.

To represent the near-source diffusion in weak winds, the eddy diffusivities

should be considered as functions of not only turbulence but also of distance
from the source [Ary95]:

0.583w, he;ity?/3 (2/h)/3X*[0.55(2/h)2/3 + 1.03c,/ 21 /3(f2,)2/* X7

K, —
[0.55(2/R)2/3 ()13 + 2.06¢)2p1/3( fx,); X *]2

3

(4.10)
where ¢, ., = 0.36, ¢,, = 0.3, and (f}}); is the normalized frequency of the spec-
tral peak independent of the stratification with (7, ) = 0.67 for the longitu—
dinal component and (), = 0.55 (%) [1—exp (-2 ) — 0.0003 exp (8z)]
for the vertical component.

The expressions used to evaluate the term (3 = Sio,1;, are obtained

in [Deg97]: »
2/3
ai:l.@ﬁcw¢— 2w,
(fr)id? (h)
1/3 0.55 1 z
¢_15—12(h) NI

The wind velocity profile was described by a power law expressed as fol-
lows [PD88]:
w, P n
(75} B <21> ’

where u, and u; are the mean wind velocities at the heights z and z;, while
n = 0.1 under unstable conditions.
4.4 Numerical Results

We now specw,hze the apphcatlon of this solution for the experimental data
elhi and we repor atistical numerical comparison in Table 4.1,
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using the statistical evaluation procedure described by [Han89]. The statis-
tical index FB indicates whether the predicted quantity underestimates or
overestimates the observed ones. The statistical index NMSE represents the
quadratic error of the predicted quantities related to the observed ones. The
best results are expected to have values near zero for the indices NMSE, FB,
and FS, and near 1 in the indices COR and FA2. In Table 4.1 we present
the statistical results for four different simulations: Case 1, stationary prob-
lem considering S = 0.0; Case 2, stationary problem considering S; = 1.0;
Case 3, transient problem considering Si = 0.0 with time of one hour; Case
4, transient problem considering Sj = 1.0 with time of one hour.

Table 4.1. Statistical results obtained with the GILTT method compared with the
IIT Delhi experiment.

GILTT NMSE COR FA2 FB FS

Case 1 0.32 0.71 0.81 0.08 -0.11
Case 2 0.27 0.71 0.81 -0.07 -0.08
Case 3 0.33 0.71 0.94 -0.02 -0.21
Case 4 0.27 0.71 0.94 -0.01 -0.18

Taking a closer look at the results appearing in Table 4.1, we promptly
note the good agreement between the results attained with those predicted
from the experimental data.

4.5 Conclusions

To summarize, we stress the relevant aspect concerning the aptness of the pro-
posed method to solve, analytically, the transient two-dimensional advection—
diffusion equation either for Fickian or non-Fickian flow. By analytical, we
mean that no approximation is made along the solution derivation. Here
we recall the Cauchy-Kovalevsky theorem, which guarantees that the pro-
posed solution is a solution of equation (4.1). From the previous discussion,
we are confident in affirming that besides the elegance inherent in analyti-
cal solutions, the GILTT approach is a promising methodology to generate
benchmark results, i.e., a relevant technique to validate computational codes.
Furthermore, we must emphasize that this method can be directly applied to
others fields of science, like heat and mass transfer problems, for instance. To
complete the study of the capabilities of this technique, we focus our future
attention on extending the application of this approach to three-dimensional,
time-dependent, advection—diffusion equations.
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5.1 Introduction

The study of wave propagation through elastic solid media can be used to
carry out non-destructive tests (NDT) of structures. These tests can be used
to detect and identify, in many cases, both the actual elastic properties and
possible geometric imperfections included in the material damage of a struc-
ture [SaGa04]. One important application of high-frequency waves is the char-
acterization of composite materials.

A composite material consists of several thin layers or laminae, and the
resultant solid acts as a full plate. The layers can be of different materials, but
normally the same material is used across the plate. Within the framework
of the science of materials, one important issue is to design and estimate the
mechanical properties of a composite material. There is an extensive literature
on this topic (see [Jo75], [TsPa68], [Wh87], and [ViSi89]). The subject of
composite materials optimal design is also of great interest and has been
treated in [GuHa99].

In this chapter, the general theory of high-frequency wave propagation
in layered media will be summarized and the dispersion equation will be
obtained. The dispersion equation is presented as a result of a generalized
nonlinear eigenvalue—eigenvector problem.

The chapter is organized as follows. In Section 5.2, the simple case N =1,
i.e., the well-known Lamb wave propagation is summarized. The dispersion
curves obtained there are used to validate some results of the multi-layered
general theory described in Section 5.3. Finally, in Sections 5.4 and 5.5, some
computational procedures and examples are presented.
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5.2 Lamb Guided Waves

An excellent summary of the general theory of Lamb wave propagation is
given in [LaLi59]. A more detailed description is presented in the recent
texts [RoDi00] and [Ro04]. Here only final results are shown.

Lamb waves correspond to a propagation of elastic waves throughout a
homogenous and isotropic elastic infinite plate bounded by two parallel planes
separated by a small distance 2A. In this case, very often wave reflections
along the faces of the plate occur, and therefore the propagation of the waves
modifies its direction. The adopted system of coordinate axes is such that the
equations of the plate free faces are xo = +h and axes x1, x3 are contained in
the plate middle plane.

According to the general theory of wave propagation, the displacement
vector u of a material point can be derived from a potential scalar ¢ and a
vector potential 1 as follows: u = V¢ + V x 1. In this expression, the two
potentials fulfill the two wave equations.

It is assumed that Lamb waves travel along the x7 axis, and diffraction
in the z3 direction is ignored. In the case of an isotropic and homogenous
elastic solid, the scalar and vector potentials are trigonometric functions of
time ¢t with the same circular frequency w. Then, they can be expressed in the
following way, with k£ the wave number:

b= qﬁo(xg)ei(“’t*k“) and = [1&0.7(x2)]ei(wt7k“), j=1,2,3. (5.1)

A boundary value problem of the waves can be defined by the wave equations
for each potential function and the boundary conditions o9; = 0,4 = 1,2,3
on the free faces xo = +h. Lamb waves occur if the dispersion equation is
satisfied, i.e., a relationship between the circular frequency w and the wave
number k. This dispersion equation, known as the Rayleigh—-Lamb equation,
is

N

t h +
W g2 |1 - PEnph o)
v gtan(gh + o)

with a=0and a= g, (5.2)

where the wave constants p and ¢ are p? = :—22 —k?> and ¢%= :—22 — k2 and

the constant angle o can take the values 0 aLnd 5 depending on tThe type of
symmetry of the Lamb wave, as will be discussed later.

If the relation (5.2) is satisfied, then the potential functions can be found
but they are multiplied by an arbitrary constant factor. Once the functions
¢(x1,w2,t) and P(x1,x2,t) are found, the displacements at time ¢ of any
material point (x1,x2) of the plate can be obtained up to a constant factor.

The equation (5.2) can be represented in the plane (w,k) and then it
defines a curve known as dispersion curve. On this curve three regions can be
distinguished, according to the value of the phase velocity V' = %. This value
can be greater than the longitudinal wave velocity vy, (region 1), or it can
lie between the velocity vz and the transverse velocity velocity vr (region 2),
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or it can be smaller than vy and therefore also than vy (region 3). Then the

wave constants can be written as p? = w? L% - % . g2 =W (U% — %)
L T

and therefore the following boundaries for the regions of dispersion space can
be defined:

Region 1. V > vy, > vp, e, k< :J Ui Then p and g are both real.
Region 2. vy > V > ovp, ie, wt k T. Then ¢ is real and p is
imaginary.

e Region 3. vp > vp > Vi ,%<%<kThenpandqareboth
imaginary.

A particular case of special interest of Lamb waves corresponds to the values
q® = k2. Details of this special Lamb wave are given in [RoDi00].

5.3 Guided Waves in N-Layered Media

The objective is to obtain the dispersion curves, i.e., to find the wave number
k for each angular frequency or pulsation w of the wave propagation through
an elastic solid of thickness H composed by N layers. From this result one can
obtain the wavelength A = ?’T as Well as the phase velocity ¢ = %, in which
the period T is defined by T = <L = 7 L with frequency f.

5.3.1 General Equations

An infinite elastic solid is considered, bounded by two parallel horizontal
planes separated a distance H (Figure 5.1). The thickness H of the solid
is divided into a set of IV layers. The layer n has a thickness h,,, and a Carte-
sian coordinate system Oz;z2x3 is introduced. The following notation will be
used: H,, = Z;jf h; and H = Hy. Each layer n is constituted by an isotropic
elastic material of density p™ and elastic Lamé constants A\™ and u”. In the
analysis of the wave propagation through the solid, the following variables for
each layer n are data: h,, A", u™, and p"™. Therefore, the wave propagation
longitudinal v} and transversal v} velocities are also data. The problem to be
solved consists in computing the wave number k corresponding to each speci-
fied pulsation value w. The resultant transcendental equation, relating k& and
w, is known as the dispersion equation, and it is derived from the condition of
existence of a nontrivial solution of a system of 4N simultaneous equations.
The dynamic equilibrium equations of layer n are

, 02U

ptVAU™ + (A" 4 p")V(V - U") = p" 5

(5.3)
and the stationary harmonic solution u(x) of these equations, with x =
(21,29, x3), is found if this solution is assumed to be expressed as U(x,t) =
u(x)e™!, in which case (5.3) becomes
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PtV 4 (A" 4 ") V(V - u”) = plw?u”.
If the Helmholtz decomposition is introduced,
u"=V.¢" +V xy", (5.4)

and in each layer we assume that the displacement u} = 0 and the other
displacement components u5 and uj are dependent only on z3 and x3, i.e.,
the following conditions are fulfilled:

¢" = ¢"(z2,23), Y3 =v3 =0 and Yf =" (z2,23),

up =0, wuy =¢%5+¢% and wuy =9 —Ph. (5.5)

Substituting equations (5.5) into (5.3), the well-known uncoupled equa-
tions for longitudinal and transversal wave propagation are obtained:

2 1 O . 2 L O]
{V wproe | =0 [V wprae] VT

in which 52 52 Nt _
/ 1 [1

Vi= S+ — T=y|— = —.

Oz2 + 0x3’ L pm or P

5.3.2 Solution

The solution of the spatial part of equation (5.3) is

¢" = CT explik] (x3sin 67 + x4 cos07)]
+ CF explik} (x3sin 0} — x4 cos07)], (5.6)

3

X

\ Layer 1
| Layerl

¢

> Layer n:pu", p", " h"

|
/
!>
< Interface n
o )
2 )

Interface N-1
Layer N

Interface 1
Interface 2
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Y™ = CF explik] (x3 sin 0 + xa cos 07)]
+ CF explikl (3 sin 07 — xo cos 01.)],  (5.7)

with i = /—1, k7 = %, and k7 = 5.

Each of the two preceding expresqéions is a sum of two terms, one repre-
senting a downward propagating plane wave and the other representing an
upward propagating term, according to the sign (positive or negative) of the
exponential term xo. The terms of the former expressions are called partial
waves and are represented in Figures 5.1 and 5.2.

” k" KLn ® kLn k
PN k A

Fig. 5.2. Four partial waves in layer n.

The values of the arbitrary constants C}* with i = 1,2, 3,4 are found from
the boundary conditions at z3 = 0 and =3 = H in which H = Zle h,, and
from the continuity conditions between the N — 1 layer interfaces as well. In
the following the different variables involved in these conditions are expressed
in terms of the unknown solution.

e Displacements. The displacement expressions can be simplified if the
following notation is introduced:

Ji =kpsind}, K} =kpcost}, Jj=kpsind}, K} =kpcosly.

Substituting (5.6) and (5.7) into (5.4) the following expressions are ob-
tained:

uy = iKp [FLhOF = FioCyl +iJp [F7y O + FrpCr], (5.8)
ug = iJE [FOF + FioCo| + iy [Fr, O — FrpCr], (5.9)

Fr iJ7 1iKxo), Fr = expliJiog+(—) ik} xs], j=1,2.

ol Lal Zyl_i.lbl
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e Strains. The strains are found by using the formulae & = 1 (u;; +u;;)
and taking into account expressions (5.8) and (5.9).
It is convenient to obtain the expression of the volumetric deformation e™
defined as e™ = &7y + 5, = Vu", i.e., according to [Ro04]:

e =— (k! [CT exp(iJfas + iK ) + CF exp(iJas — iKas)],

where
Ji =kisind} =k, Jp =kijsint} =k, (5.10)

K7 =k} cos0f = /(k})? — k2, K} =k} sintp =4/ (k)2 — k2.
(5.11)

e Stresses. The stresses acting on the faces of each layer are found from
the Lamé constitutive equations as follows:

oy = A"e"0;; + 2u"el.

5.3.3 Boundary Conditions

From the displacement and stress expressions, the boundary conditions can
be set up. In the following discussion it is assumed that each of the N layers
is a solid, i.e., an intermediate liquid does not exist.!

e Free upper face. The free face is (zo = 0, —00 < z3 < o00) and the
boundary conditions to be imposed are oy = o, = 0 and these equations
can be written in the form [Ro04]:

[\ (k)7 + 20t (563)°] [C} + €3] + 2utkEc) [C3 - ] =0,

2kt KL [CF - 3] + 4t [ (1) - 2] [+ cd] =,

e Layers n and n + 1. Interface n. The interface n is defined as (ry =
H,, —o0o < z3 < oo) with H,, = Z;’zl h; and the conditions to be
imposed are

uy = u721+17 uy = ug+1> 03 = 0324_17 033 = Ug?j—l (5'12)
with n = 1,2,..., N — 1. The following notation is introduced for each

layer n, with H = H,:
F" = 1nFn QnFn 3nFn 4nFn _
r o (a'r‘ 150 250y 350y 4 ) T = U2, uz, 022, 023,

where FJ' = ¢tH  p = o7HKLH  pno— gikrH 5 pa — oK H

! In the existence of a liquid layer between two solid layers, the boundary conditions
on the liquid layer faces can be expressed by zero shear stresses and displacements

ol Lal Zyl_i.lbl



5 Guided Wave Propagation in N-Layered Media 47

and for the different values of r the coefficients al”, j = 1,2, 3,4 are

r=uy:  a'=—aX" =K} o' =a" =k

r=uz: a"=ad"=k, a2 = —a}" = K.

_ . In __ 2n7)\nk,n2 QnKn2 3n7_4n72 nkKn

r=022: G =a. = (L) + M( L)var = Q. =zl T
. In __ 2n __ n n 3n _ 4n _ n 2 2

T =023: A, = —a, __2:u’ kKLv Qp =0Qp = [ [(KT) _k]

With this notation the conditions (5.12) can be written for each index r
as follows:

F:}Cn — FfHC"‘H =0 forr= Ug, U3, 022, 023 (513)
in which for n =1,2,..., N the vector of unknown constants is defined as
cr=(cr op oy o)

e Layer N. Free lower face. This surface is defined by the expression
(xg = H, —o0 < x3 < 0o) and the boundary conditions to be imposed
are oy, = o} = 0, i.e., these resulting equations are similar to the ones
corresponding to the free upper face.

5.3.4 Dispersion Equation
The former boundary and continuity conditions can be written in matrix form:
A C'=0,...,A,,C"+ A, ,1C" =0,... Ay yCV =0 (5.14)

with AY; and A%  coefficient matrices of 2 x 4 dimension. The dimension
of coefficient matrices A, ,and A, 41 is 4 x 4. All elements of these ma-
trices are functions of the problem data. The unknown to be found, for each
specified circular frequency w, is the wave number k. The remaining variables
of the coefficients of the former matrices can be expressed as functions of the
unknown k, according to equations (5.10) and (5.11).

The number of unknowns of the system of homogenous equations (5.14) is
2 for each end surface (lower and upper faces) and 4 for each interface; then
the total number of unknowns is 2 X 2 4+ 4(/N — 1) = 4N plus four constants
C?! for each layer n, i.e., the total number is 4N. Therefore, the dimension
of the system (5.14) is 4N x 4N and it can be written as AC = 0, in which
C = (C'T,c?" ... ,CNT)T and the coefficients of the matrix A are found
from the expressions (5.14).

In order for the solution of the system of homogenous equations (5.14) to
be nontrivial, it is necessary that the determinant of matrix A be zero, i.e.,
the following dispersion equation must be satisfied:

det(A) =0, that is JA(w, k, A", u", hy)| = 0. (5.15)
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In equation (5.15) the data are the constants A", u" h, for each layer n,
with n = 1,2,..., N. The wave numbers K} and K7} can be expressed as
functions of the unknowns k and w, according to formulae (5.10) and (5.11).
Then by solving equation (5.15) it is possible to compute for each circular
frequency w the infinite values of k, although a finite number of k£ are real
values, i.e., nonimaginary numbers. Each pair of solutions defines the phase
velocity ¢, = ¢.

Several numerical procedures exist to find solutions k for each value of w,
and some of them will be discussed in a later section.

5.3.5 Results

By sweeping of the pair k£ and w, it is possible to represent the frequency
spectrum. In addition, the dispersion curves defined by ¢, = % as a function
of the circular frequency w is another result of interest. Once the pair of values,
k; and wj, have been obtained as a solution of the dispersion equation (5.15),
it is necessary to compute the column vector C = C; of dimension 4N x 1
containing the values of the constants, assuming the system of equations (5.14)

particularized for the values k; and wy, i.e.,
C;=[C}] with C/"=[C} Cp C Cp ], n=1273,...,N.

From the knowledge of the values of these constants, the following results
of interest as a function of zs using the corresponding formulae can be
found: (a) Displacement values uj(x2,x3) and ug(x2,x3); (b) values of the
strains eqo (e, x3), €33(wa, z3), and e93(x2, x3), where z3, and ¢ are parame-
ters; (c) values of the stresses oa3(72,T3), 033(%2,x3), and oa3(w2, x3), where
xz and t are parameters.

5.4 Numerical Solution of the Dispersion Curve

A general numerical procedure has been developed to build up the matrix A
of complex elements, to solve the nonlinear equation (5.15), and to generate
the dispersion curve ¢, = 7.

Algorithms with global convergence, i.e., those aiming to obtain an ap-
proximate value of the root, are used for an initial guess of an interval of
approximated solutions [FoMa77]. Among them the bisection procedure has
been used (if simple zeros are considered) and also the algorithm based on
the change of slope detection and minimum value of the function det(A) (if
multiple zeros are taken into consideration). The obtained values are then
starting values for the local convergence algorithm. Due to the difficulty of
obtaining an explicit derivative of the function, a method of linear interpola-
tion has been selected using the secant procedure. The convergence order in
this case for simple roots has.been 618 [StBu80] but for multiple roots the
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convergence order is deteriorated to become of order 1. However, in this last
case, the Aitken convergence acceleration technique [MaFi98] can be applied.
The algorithm of quadratic inverse interpolation (method of Muller) [MaFi98]
has also been tested and has similar convergence results computationally but
is more efficient than the Aitken method. However, this interpolation method
demands three initial values to be applied.

Using the programming environment MATLAB, several subroutines have
been written.

The main computational steps of this analysis are summarized as follows.

1. Computation of Lamb modes. For a given frequency, within the in-
terval (k1,k2) the graph det(A) — k is represented and the zeros of the
dispersion equation can be computed. In the case of simple zeros, the bi-
section algorithm is efficient for obtaining a preliminary approximation of
the root. In the case of a multiple zero, it is necessary to detect a slope
change and also the minimum of the absolute value of the function det A
in order to find an approximation of the root.

2. The selection of the propagation mode of interest. The mode is
selected by choosing a value close, obtained already in step 1, to the exact
solution either for k (or c,), and this value is used as a starting point for
the generation program (program of local convergence) of the dispersion
curve. In this case the secant method or an algorithm based on quadratic
inverse interpolation (Muller [MaFi98], Dekker—Brent [FoMa77]) can be
used.

5.5 Results Validation

A first validation example will be the simulation of a Lamb wave propagation
through a plate of total thickness h considering this plate as a composite
material composed of N layers of identical thickness % and equal properties.
The example uses a steel plate defined by 2h = 0.02 m, E = 1.962 x 10® MPa,
v = 0.3093, and p = 7.797 t/m3. A train of symmetric Lamb waves (a = 0)
is introduced with frequency f = 200 x 10%. Then from (5.1) the circular
frequency is w = 1256637.061 rad/s and the velocities are vy = 3099.9248
m/s and vy, = 5889.5724 m/s. The dispersion equation (5.2) can be used to
find the wave number k = 218.1658 m~! and the wave velocity V = 5760.01
m/sec. In this particular case, the Lamb wave is located in the region 2, i.e.,
p is an imaginary number and ¢ is a real number. For comparative purposes,
the plan dimensions of the plate are supposed to be very large in order to
simulate a plane strain as is assumed in the Lamb wave propagation.

This plate has also been modeled as an N-layered plate, with N = 2, 3,4,
and 5 layers, and the analysis of the wave propagation through the multi-
layer plate has given the same result k& = 218.1658 as the one found using
the dispersion equation (5.2). The displacements of the plate subjected to
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Lamb waves are computed assuming the values p and ¢ are in region 2. These
displacements are compared with the ones obtained using the expressions
found from the analysis of multi-layered elements, once the constants C are
computed, using formulae (5.8) and (5.9) for the region 2. The dispersion
curves obtained for the former plate modeled as an N-layered plate with
N = 2,3, and 4 are shown in Figures 5.3-5.5.

STEEL 7797.0Kg/im3 2 layers h1=h2=0.010 m

6,

S

5.6

S

i

5

cp (Kmys)

4.8
4.4 -

42

4 | | 1 i i i i i ]
018 02 022 024 026 028 03 032 034 036
f (MHz)

Fig. 5.3. Steel plate modeled as a 2-layered plate.

In Figure 5.6 the dispersion curve corresponding to an aluminum plate of
thickness h = 40 mm, p = 2698.4 kg/m3, and vy, = vy = 6300 m/s is shown. In
Figure 5.6, the dispersion curve for the former plate with an additional upper
ice layer h = 3 mm is shown. The ice layer properties are p = 917 kg/m?,
vy = 3980 m/s, and vy = 1990 m/s. In the following Figure 5.7 the effect
of the thickness variation of a steel plate is described. The plate is defined
by h = 20 mm, p = 7797 kg/m?, v;, = 5889.57 m/s, and vy = 3099.92 m/s.
Thickness variation curves for 1%, 5%, and 10% are given in the figure.

Acknowledgement. Financial support provided by the Spanish Ministry of Education
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authors.
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Fig. 5.4. Steel plate modeled as 3-layered plate.
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Fig. 5.5. Steel plate modeled as 4-layered plate.
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ICE ON ALUMINUM plce=917Kg/m3, pAl=2698.4Kg/m3, h1=0.003m, h2=0.040m
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Fig. 5.6. Aluminum plate with A = 40 mm.
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Fig. 5.7. Sensitivity of the steel dispersion curve to plate thickness.
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6.1 Introduction

We consider a control problem of optimal design consisting in mixing two
electric phases in order to minimize a given objective function. For simplicity,
we assume that the two phases are isotropic, although the results still hold true
for more general composites (see [CaEtAl08]). Mathematically the problem
can be formulated as follows.

Let £2 be a bounded smooth open set in RY, N > 2, let «, 3, k be positive
constants such that a < 8, k < |2|, and let f be in L?*({2). We look for a
measurable set w C {2 with |w| = k such that the solution u of

{ —div(axw + fxo\w)Vu = f in £2,

u € Hy(92), oy

minimizes the functional
J(u) = / F(Vu)dz + G(u),
1)

where I : RY — RY has a growth of order two at infinity and G : H}(£2) — R
is sequentially continuous in the weak topology of H{(2).

The constants « and g represent the conductivity of the two phases. The
restriction |w| = & on the volume of the sets w comes from the fact that
usually one of the phases has better properties than the other one, but it is
also more expensive and we can only use a limited quantity of it.

It is well known ([Mu71], [Mu72]) that this control problem does not have
a solution in general. In fact, when we try to prove the existence of a solution
using the direct method of the calculus of variations, two main difficulties
appear. If we consider a minimizing sequence of sets w, C (2, it is easy to
prove that the corresponding solution w, of (6.1) with w replaced by w,, is
bounded in Ha(£2). Therefore, there exists u € H}(§2) such that, up to a

C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 55
Volume 2: Computational Methods, DOT 10.1007/978-0-8176-4897-8 6,
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subsequence, u, converges weakly to u in H}(£2). However, in general there
does not exist a measurable set w C 2 such that this weak limit u is the
solution of a problem such as (6.1). Moreover, since we only have the weak
convergence in Hg (£2) of u,, to u and the cost functional depends nonlinearly
on the gradient of the state, we cannot ensure that J(u,) is converging to
J(u).

From the above considerations, it follows that it is necessary to introduce
a relaxation of the problem. For F' = 0, this relaxation is obtained by re-
placing the materials of the form ax, + fxqo\. by the mixtures of a and
(3 obtained by homogenization (see [MuTa85]). For a general F, it is proved
in [CaCoMa08] that this relaxation is obtained using as above the materi-
als constructed by homogenization, but taking instead of F'(Vu) a function
H(Vu, MVu,0), where M is the homogenized matrix and 6 the proportion
of material o used in the mixture (related results can be found in [A1Gu07],
[BePe02], [Gr01], [LiVe02], [Pe06], and [Ta94] in the case where F(¢) = [€]?).
This function H : RN x RN x [0,1] — (—o0, +0o0] is defined in [CaCoMa0§]
by means of a minimization problem. We only have an explicit expression of
H in the boundary of its domain D, which makes it very difficult to deal with
the relaxed problem.

The main goal of this chapter is to show how the solutions of the relaxed
control problem can be numerically approximated replacing H by an upper
or lower function which agrees with H on 0D, taking the proportions and
the materials constant in the components of a partition of {2 whose diameter
tends to zero, and solving the partial differential equations using the usual
finite elements. The results given in this chapter are proved in [CaEtAl0S],
where the anisotropic case is also considered. In that paper, we also provide
some numerical experiments.

6.2 Statement of the Problem and Prerequisites

Throughout the chapter, we consider a bounded open set 2 ¢ RN, N > 2,
sufficiently smooth so that Meyer’s theorem ([Me63]) holds, three positive
constants «, 3, s such that o < 3 and x < |£2|, a function I : RN — R¥
satisfying the existence of L > 0 such that

(P&~ FE) < LA+ gl +[ENIE ¢, V& & eRY,
a functional G : H(£2) — R sequentially continuous for the weak topology

of H}(£2), and a function f € L%(£2). For these data, we are interested in the
numerical solution of the coefficients control problem

inf { /Q F(Vu) do + G(u)} , (6.2)

where u is such that there exists w C (2 satisfying
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{ —div(ax, + Bxo\w)Vu = f in 2,

(6.3)
ue HH (), wC 2 measurable, |w| = k.

Definition 1. Forp € [0, 1], we define K(p) as the set of materials constructed
by homogenization using the phase a with proportion p, and the phase (3 with
proportion 1 —p

The set K(p) is characterized in [MuTa85] (see also [LuCh86]), where the
following assertion is proved.

Theorem 1. For p € [0,1], denoting A, A} € R by

-1
Ay = (Z*’%) . Ay =pa+(1-p)B,

we have

K(p) = {M e RVN . M symmetric with eigenvalues A1, ..., \y satisfying

N
1 1 N -1
<N <A Vie{l,... N <
A, <A <A Vel }’;Ai—a—A;_a+A;—a’
g: 1 1 +N—1}
BN T BN BN

Definition 2. For every p € [0,1], £ € RN, we denote
pE={Me: MeKp)}={necRY: (n-A& (n— A€ <0}
We also define
D= {(&n,p) e RN xRV x[0,1]: ne K(p)¢}.

The following result is proved in [CaCoMa08], and it gives the relaxation
of problem (6.2)—(6.3).

Theorem 2. There exists a continuous function H : D — R, which only
depends on a, 3, and F' such that a relazation of problem (6.2)-(6.3) is given

N min {/Q H(Vu, MVu,0)dz + G(u)} , (6.4)

with (u, M,0) € HE(2) x L®(2)N*N x L>®(Q) satisfying

—divMVu=f in 2

(6.5)

0<6<1ae.inf? Ode=r, MeK(0) ae. infl
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Assuming H extended by +oo outside D, it satisfies the following properties:
(i) First,

liminf/ H(Vun,an,ﬁn)de/ H(Vu,o,0)dx,
0 o)

n—oo

Y (Uny Oy On) such that u, — u in Hy(2), (6.6)

0, =0 in L®(2), 0, — o in L*(2)N, dive, — dive in H ().
(ii) For every (§,m,p) € D we have

el < Liel (14 21g).

(iii) The value of H on the boundary of D is given by
BE—n n—og
H =pF | —— -p)F | ————
€m=oF (G )+ 0-0F (o).
V(& n.p) €9D, p#0,1, (6.7)

H(¢ a6, 1) = H(E,¢,0) = F(E), VEeRY.

Moreover, if F is conver, then

H(&,n,p) = pF ((55_—_031)) +(1=-pF (%) ;

V(& n.p) €D, p#0,1.
Remark 1. The function H is defined in [CaCoMa08] using periodic homog-

enization. By Theorem 4.5 in [CaCoMa08], taking O C R™ open, bounded,
and smooth, it can also be defined by

H(&,n,p):min{liminfi/ F(Vuy)dz: u, —&-x—0in H}(O),
o

n—00 |O|

Wy C O, X, —pin L®(0), (aXw, + BX\w, )V, =1 in L*(O)N,

— div(aan + ﬁxg\wn)Vun =0 in O}, (6.8)

for every (&,m,p) € D.

Remark 2. Restrictions (6.5) are equivalent to

—dive = fin 2

(6.9)

0<6<1la.e. in{? Odr =k, o€K(@)Vu ae. in (2,
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in the sense that (u,o,0) satisfies (6.9) if and only if there exists M € K(0)
such that 0 = MVu and thus (u, M, 0) satisfies (6.5). Thus, sometimes in this
chapter we will say that (i, ,0) is a solution of (6.4)~(6.5) to mean that it
gives a minimum of

/ H(Vu,o0,0)dr + G(u),
2

with (u, 0, 8) satisfying (6.9).

6.3 Discrete Approximations

For H defined by (6.8), we consider another function H : RV xRY x [0,1] — R
such that

|

=400 in (RN xRN x [0,1])\ D,
H(&n,p) > H(én,p), Y(Enp) €D,

H is lower semicontinuous,
H(¢,a8,1) = H(E,p¢,0) = F(6).

Let us show how this function H can be used to solve numerically prob-
lem (6.4)—(6.5).

For h > 0, let us consider a partition of (2 given by T}, C 2,1 < j < np,
such that

(6.10)

Nh

Q=] Tjn [Tinl >0, diam(T},) < b,
j=1

|T’,h ﬁCZ—’k:,h| = 0’ 1 < ]7k < Th, .7 7& ka

(6.11)

and a closed subspace V,, C H{(£2), which satisfies the following properties:
(i) First,

. . . _ 1
;ILIL% nin. lvn = vllmr@) =0, Vv e Hy(2). (6.12)

(ii) Second,
}{11)1’%) Uinel‘r}h ||’Uh - thPHHOI(.Q) =0, VQP € C'c (‘Q)’ (613)
Vwy, € Vj, bounded in H{(£2).
(iii) Third,

lim inf/ H(NVup,op,0p)dr > / H(Vu,o,0)dz, (6.14)
h—0 0 (9

for every (un,on,0r) € Vi, x L2(£2)N x L>(£2) such that
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up —uin Hy(2), 6, >60in L®(2), o, — o in L*(2)V,

1 (6.15)
lim max —/(ah—a)-Vvhdxzo.
h—0v, eV, \{0} ||'Uh||H1(Q)
With these definitions we consider the discrete control problem
min {/ H(Vu, MVu,0)dr + G(u)} , (6.16)
Q
with (u, M, 0) € Vi, x L= (2)N*N x L[>(§2) satisfying
/ MVu-Vuode = / fodz, YveV,
o) 0
/ Gdr—r, 0<0<1, MeK() ae in, (6.17)
0

0, M constants in T} 5, 1 <7< np.
Under these assumptions, we have the following result.

Theorem 3. We take H, T} 1, and Vi, as above. Then problem (6.16)—(6.17)
attains its minimum in some (Up, My, éh) The functions (lp, M, Vi, éh) are
bounded in HE(£2)x L2(2)N x L*(02) uniformly in h. Taking any subsequence
of h (still denoted by h) such that iy, converges weakly in HL($2) to some 1,
M, Vi, converges weakly in L?(2)N to some &, and oy, converges weakly-= in
L>°(2) to some 6, we get that (i, 6,0) is a solution of (6.4)-(6.5). Moreover,
we have

lim ( / H(Vip, MyViy, 05) do + G(ﬁh)> = / H(Vi, MVi, 0) dz + G(a).
h—0 () 0

Remark 3. The most simple example of function H satisfying (6.10) is

H(¢, 06,1) = (&, 56,0) = F(§) V6 € RN, H(&,n,p) = +oo otherwise.

However, it would be desirable to take H close to H. In this sense a choice of
H which seems to be a lot better than the previous one is to take H = H in
9D and 4o in another case. Recall that the expression of H in 9D is given
by (6.7).

Remark 4. Taking Vj, as the whole space Hg(£2) for every h (i.e., solving the
state equation —div MVu = f in 2 exactly), property (6.6) of H implies that
V}, satisfies (6.14), while (6.12) and (6.13) are trivially satisfied. So, Theo-
rem 3 shows the convergence of the numerical method consisting in taking
in problem (6.4)-(6.5) the function H replaced by any H satisfying (6.10),
and the controls 19 M constants in the elements of a partition {Tj;} of 2
S8 ng (6 0 the and; in the few cases where we know IH,
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property (6.14)—-(6.15) is in fact satisfied for any sequence of closed subspaces
Vi, C HE(£2). So, in these cases only properties (6.12) and (6.13) must be
verified. Indeed, assuming {2 a polyhedron, these properties hold for the usual
Lagrange finite elements.

In order to solve numerically problem (6.4)—(6.5), in Theorem 3 we have
replaced H by an upper function. Next we show an analogous result replacing
H by a lower function.

We consider a function H : RY x RY x [0, 1] — (0, +-00] which satisfies the
following properties:

H is continuous in D, (6.18)
H(¢m,p) <H(& n,p) Y(En,p) €D, (6.19)
H(¢m,p)=H(En,p) Y(En,p) e dD, (6.20)

and for every p € (0, 1), the function (¢,7) € RY xRN — H(¢,n, p) is Fréchet
differentiable and there exists ¢ > 0 such that

OcH(E,m, )| + 10, H(E,mp)| < ¢ (1 el + I+ 1 — i "7‘“5') ,

1—p

V(& n,p) € RY x RN x (0,1).
(6.21)

Theorem 4. We consider H : RY x RN x [0,1] — (0, +oc] as above.

For h > 0, let us consider a partition of £2 given by T, C 2,1 < j < mny,
which satisfies (6.11). Assume also that there exists a sequence Vi, C Hy(£2)
of closed subspaces satisfying (6.12), (6.13), and such that

h—0

liminf/ﬁ(Vuh,ah,Gh)dxz/Q(Vu,a,e)dx, (6.22)
fo) fo)

for every (up,on,0n) € Vi, x L2(2)N x L*°(02) which satisfies (6.15).
We consider the discrete control problem

min {/ H(Vu, MVu,0)dz + G(u)} , (6.23)
o)
with (u, M, 0) € Vj, x L=(2)N*N x [>(0) satisfying
/ MVu - Vudr = / fvdx, YoveV,
Q o)
(M, 0) € co({(M,p) € RN*N x[0,1] : M € K(p)}) a.e. in 2, (6.24)

/ Odx =k, 0, M constants in Tjp, 1 <j <ny.
Q

Then pmblem (6 23) (6 24) attains its minimum in some (i, My, 0y). The
' My Vi ndedyin Hi(2)x L?(2)N x L>(92) uniformly
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in h. Taking a subsequence of h (still denoted by h) such that 4y, converges
weakly in HY () to some i, MyViy, converges weakly in L*(2)N to some &
and 0), converges weakly-+ in L>(£2) to some 0, we have that (ii,5,0) is a
solution (see Remark 2) of

min { /Q H(Vu, MVu,0) dz + G(u)} :

with (u, M,0) € HE(£2) x L®(2)N*N x L>®(Q) satisfying (6.5). Moreover,

h—0

lim ( / H(Viy,, My Vi, 0,) do + G(ﬁh)> = / H(Vi, MV, 0) de + G(a).
0 (7}

Finally, if F is Fréchet differentiable and the solution q of
—divMVq=—divZ in 0,
q € Hy(92),

with

Z = VE(Va)X 591y + (0 H(Vii, MV, 0)
+ MO, H(Vit, MV, 0))X g1y

satisfies

O, H(Vi, MVi,0) # Vq a.e. in £,
then (i, M, 0) is a solution of (6.4)-(6.5) and

H(Va, MVi,0) = H(Va, MVi,0) a.e. in £.

The assumptions imposed on the function H are justified by the following
result.

Proposition 1. Assume F convex and Fréchet differentiable. For (&, n,p) €
RY x RN % [0,1], we define H(&,n,p) by

( BE—n 3 n—af
pF((ﬂ—a)p)+(1 ”)F(w—am—p))

if (&,n,p) €D, p#0,1,
F&) if p=0,n=p or p=1, n=af,

+o0  otherwise.

\

Then H satisfies the properties (6.18), (6.19), (6.20), and (6.21). Moreover,
property (6.22) is satisfied by any sequence of closed subspaces Vi, C HE(£2).
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7.1 Introduction

We revisit an optimization strategy recently introduced by the authors to
compute numerical approximations of minimizers for optimal control problems
governed by scalar conservation laws in the presence of shocks. We focus on the
one-dimensional (1-D) Burgers equation. This new descent strategy, called the
alternating descent method, in the inviscid case, distinguishes and alternates
descent directions that move the shock and those that perturb the profile of
the solution away from it. In this chapter we analyze the optimization problem
for the viscous version of the Burgers equation. We show that optimal controls
of the viscous equation converge to those of the inviscid one as the viscosity
parameter tends to zero and discuss how the alternating descent method can
be adapted to this viscous frame.

Optimal control for hyperbolic conservation laws is a difficult topic which
requires a considerable analytical effort and is computationally expensive in
practice. In the last years a number of methods have been proposed to reduce
the computational cost and to render this type of problem affordable.

In particular, recently, the authors have introduced the alternating descent
method, which takes into account possible shock discontinuities. This chapter
is devoted to revisit this method in the context of the viscous Burgers equation.

We focus on the 1-D Burgers equation although most of our results extend
to more general equations with convex fluxes. Most of the ideas we develop
here, although they need further developments at a technical level, apply to
multi-dimensional scenarios, too.

To be more precise, given a finite time horizon T > 0, we consider the
following inviscid Burgers equation:

2 .
Ou+0:(%) =0, inRx(0,7),
2 (7.1)
u(z,0) = u’(x), z€R.
We also consider its viscous counterpart
C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 65

Volume 2: Computational Methods, DOT 10.1007/978-0-8176-4897-8 7,
© Birkhauser Boston, a part of SpringeriScience + Business Media, LLC 2010



66 C. Castro, F. Palacios, and E. Zuazua
Ot — Vg + 05(%) =0, in R x (0,T), (7.2)
w(x,0) =u(x), xR, '

where v > 0.
Given a target u? € L?(R) we consider the cost functional to be minimized
J : LY(R) — R, defined by

J(u®) = /R lu(z, T) — u(z)|? dz, (7.3)

where u(x,t) is the unique entropy solution of (7.1) in the inviscid case or
the unique weak solution of the viscous model (7.2). Sometimes, to make the
dependence on the viscosity parameter v more explicit, the functional J will
be denoted by .J,,, although its definition is the same as that of J, but rather
for the solutions u, of (7.2) instead of (7.1). Note that the functional above
is well defined in both cases, inviscid and viscous, because of the effect on
the gain of integrability of both equations: When the initial data belongs to
L'(R), the solutions of both (7.1) and (7.2), for any positive time ¢ > 0, belong
to L*(R) N L*>®(R).

Although this chapter is devoted to this particular choice of J, most of
our analysis can be adapted to many other functionals and control problems
(we refer for instance to [JaSe99] and [CaZu08], where the control variable is
the nonlinearity of the scalar conservation law).

We also introduce the set of admissible initial data U,q C L*(R), that we
define later in order to guarantee the existence of minimizers for the following
optimization problem: Find u®™" € U,y such that

J@®™™y = min  J(u). (7.4)
uO€Uaq

Similarly, we consider the same minimization problem for the viscous model
(7.2): Find u%™™ € Uy,q such that

J,(ud™™) = min J, (u?). (7.5)
u0€Upq
This is one of the model optimization problems that is often addressed in the
context of optimal aerodynamic design, the inverse design problem (see, for
example, [GiPi01]).

As we will see, the existence of minimizers for both models, the inviscid and
the viscous one, is easily established under some natural assumptions on the
class of admissible data U,y using well-known well-posedness and compactness
properties of the Burgers equation. However, uniqueness is false, in general.

The first result of this chapter is a I'-convergence result guaranteeing that
any sequence of minimizers {u%™"},-o , as v — 0, has a minimizer u%™i® of
J as an accumulation point.

Obviously, when v > 0, which is the common situation in practice, solu-
tionsyare;smoothythereforepthesalternating descent method, based on the fact



7 Optimal Control for the Viscous Burgers Equation 67

that solutions have shock discontinuities, cannot be applied as such. But for
v small enough, solutions present quasi-shock configurations. It is therefore
natural to analyze how the method can be adapted to this situation to take
advantage of the presence of these quasi-shocks.

The closely related issue of numerical approximations in the inviscid case
has already been discussed in [CaPa08]. Indeed, in practical applications and
in order to perform numerical computations and simulations, one has to re-
place the continuous optimization problems above by discrete ones. In par-
ticular, in what concerns the inviscid model (7.1), it is natural to consider
a discretization of system (7.1) and the functional J. If this is done in an
appropriate way, the discrete optimization problem has minimizers that are
often taken, for small enough mesh sizes, as approximations of the continu-
ous minimizers. This convergence result was proved in [CaPa08] in a suitable
class of monotone finite difference schemes, satisfying the one-sided Lipschitz
condition (OSLC). These schemes introduce artificial numerical viscosity. But
the analysis in [CaPa08] showed that if, in the optimization process, the fact
that discrete solutions may be close to shock configurations is not used, the
discrete gradient algorithm shows a very slow convergence rate. Accordingly,
the method proposed in [CaPa08] combines the discrete optimization approach
and continuous shock analysis to derive the alternating descent method, which
performs better. It is therefore natural to address the optimal control of the
viscous model (7.2) similarly by viewing it as an approximation of the in-
viscid one (7.1) as ¥ — 0 and trying to take advantage of the quasi-shock
configurations when they arise. This is precisely the goal of this chapter.

Our first result guarantees the convergence of the minimizers, based on
the fact that the OSLC is satisfied uniformly with respect to the vanishing
viscosity parameter, which ensures compactness.

The rest of this chapter is organized as follow. In Section 7.2 we recall
the basic results in [CaPa08] on the existence of minimizers for the continu-
ous problem (7.4). In Section 7.3 we analyze the convergence of the viscous
minimizers as v — 0. In Section 7.4 we recall some known results on the sensi-
tivity of the continuous functional by linearizing system (7.1) in the presence
of a shock. In Section 7.5 we briefly recall the alternating descent method.
In Section 7.6 we develop an adaptation of the method of alternating de-
scent directions to the viscous case. In Section 7.7 we present some numerical
experiments that show the efficiency of the method we have developed.

7.2 Existence of Minimizers

In this section we prove that, under certain conditions on the set of admissible
initial data U,q, there exists at least one minimizer of J and J, for all v > 0.
To simplify the presentation, we consider the class of admissible initial
data Uyg:
Ugqg = {f k> (R)ssupp(f) C K, || flle < C},
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where K C R is a bounded interval and C' > 0 a constant. Obviously, U,q as
above is a bounded set of L*(R).

The analysis we shall develop here can be extended to a much wider class
of admissible sets.

Theorem 1. Assume that U,q is as above and u? € L*(R). Then the mini-
mization problems (7.4) and (7.5) have at least one minimizer u®™™ € U, .

Proof. The proof is simpler when v > 0 because of the regularizing effect of
the viscous Burgers equation. But, in order to develop arguments that are
uniform on the viscosity parameter v, it is better to give a proof for the
inviscid case, which applies in the viscous one as well. Thus, in what follows,
we refer to the functional J although the same arguments apply for J, too.

Let ug € Uyq be a minimizing sequence of J. Then, by definition of U4,
u? is bounded in L and there exists a subsequence, still denoted by u?, such
that ul — u? weakly-* in L°. Moreover, u? € Uyq.

Let wy,(x,t) and u.(x,t) be the entropy solutions of (7.1) with initial data
u? and u?, respectively, and assume for the moment that

un(T) = us(T),  in L2(R). (7.6)

Then, clearly,
. 0 : 0 0
uolerlbljad J(u’) = nh_{r;c J(up) = J(uy,),
and we deduce that u? is a minimizer of J.

Thus, the key point is to prove the strong convergence result (7.6). Two
main steps are necessary to do it. a) The relative compactness of u,(-,T) in
L?. Taking the structure of U, 4 into account and using the maximum principle
and the finite velocity of propagation that entropy solutions fulfill, it is easy
to see that the support of all solutions at time ¢t = T is uniformly included in
the same compact set of R. Thus, it is sufficient to prove compactness in LIQO o
This is obtained from Oleinik’s one-sided Lipschitz condition

u(z,t) — u(y, t)

1
< - 7.7
pra—y <5 (7.7)

which guarantees in fact a uniform bound of the BV-norm of u,(-,T), lo-
cally in space (see [BrOs88]). The needed compactness property is then a
consequence of the compactness of the embedding BV (I) C L?*(I), for all
bounded intervals I. b) The identification of the limit as the entropy solution
of (7.1) with initial datum u?. This can be proved using this compactness
property and passing to the limit in the variational formulation of (7.1). We
refer to [EsVa93] for a detailed description of this limit process in the more
delicate case where the initial data converge to a Dirac delta.

This completes the proof of the existence of minimizers in the inviscid
case.
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In the viscous one, one cannot use the finite velocity of propagation. How-
ever, it is easy to get uniform bounds on the queues of solutions as |z| — oo,
which allow us to reduce the global compactness problem to a local one. Lo-
cally, the same argument as above, based on the one-sided estimate (7.7),
which is also true for the viscous equations, applies.

Remark 1. The above proof is in fact quite general and it can be adapted to
other optimization problems with different functionals and admissible sets. In
particular, using Oleinik’s one-sided Lipschitz condition (7.7), one can also
consider admissible sets of the form

Uoa = {f € L'(R), supp(f) C K, [|f]l1 < C}.

7.3 Vanishing Viscosity

The purpose of this section is to show that the minimizers of the vicous prob-
lem (v > 0) converge to a minimizer of the inviscid problem as the viscosity
tends to zero, v — 0.

Theorem 2. Any accumulation point as v — 0 of ul™"  the minimizers
of (71.5), with respect to the weak topology in L?, is a minimizer of the con-
tinuous problem (7.4).

Proof of Theorem 2. We follow a standard I'-convergence argument, as
in [CaPa08], in the context of the convergence of minimizers for the numerical
approximation schemes.
The proof is similar to the one in Theorem 1, although, this time, v — 0.
The key ingredient is the following continuity property. Assume that u! €
U,q satisties ud — u® weakly in L?(R). Then

T, (u®) — J(u?). (7.8)

This is due to the fact that the OSLC condition, together with the uniform
L'-bound, guarantees uniform local BV bounds on the viscous solutions. For
the viscous problem we do not have a finite velocity of propagation property
but, as mentioned above, the uniform control of the queues allows us to reduce
the compactness problem to a local one and then the local BV bounds suffice.

The limit process, as the viscosity parameter tends to zero, to recover in
the limit the weak entropy solution of the inviscid model, can be conducted
in a classical way. This is, for instance, done in [EsVa93].

Now, let 4 € U,y be an accumulation point of u%™" with respect to
the weak topology of L2. To simplify the notation, we still denote by u2™in
the subsequence for which u%™n — 40 weakly-* in L>(R), as v — 0. Let
1Y € Uyq be any other function. We are going to prove that

)<< J (). (7.9)
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To do this we construct a sequence v0 € Uy, such that v) =% in L3(R), as
v — 0. In this particular case, taking into account that the set of admissible
controls U}, is independent of v > 0, i.e., Uaq = U}, it is sufficient to choose,
in particular, v2 = v°.
Taking into account the continuity property (7.8), we have
J(%) = lim J,(v2) > lim J, (u%™") = J(4°),
v—0 v—0

v

which proves (7.9).

Remark 2. Theorem 2 concerns global minima. However, both the continuous
and discrete functionals may possibly have local minima as well. Extending
this kind of I'-convergence result for local minima requires important further
developments.

7.4 Sensitivity Analysis: The Inviscid Case

In this section we collect the results in [CaPa08] for the sensitivity of
the functional J in the presence of shocks, which follows previous works,
e.g., [BrMa95a], [BaPi02], [BoJa98], [BoJa99], [Ul03], and [GoRa99].

We focus on the particular case of solutions having a single shock, but
the analysis can be extended to consider more general one-dimensional sys-
tems of conservation laws with a finite number of noninteracting shocks
(see [BrMa95a)).

7.4.1 Linearization of the Inviscid Burgers Equation

Following [CaPa08], we introduce the following hypothesis.

(H) Assume that u(z,t) is a weak entropy solution of (7.1) with a discon-
tinuity along a regular curve X = {(¢,¢(t)),¢ € [0,7]}, which is Lipschitz
continuous outside Y. In particular, it satisfies the Rankine-Hugoniot condi-
tion on X,

Qpl(t)[u]ap(t) = [u2/2] POR (7'10)

or, simply,
¢'(t) = (u(p(t)™, 1) +ulp(t) ™, 1)) /2. (7.11)

Here we have used the notation [v],, = v(zg) — v(zy ) for the jump at x

of any piecewise continuous function v with a discontinuity at x = x, v(:c(jf)
standing for the values of v to both sides of xg.
Note that X divides Rx (0,T) into two parts: @~ and Q™ , the subdomains
of R x (0,7T) to the left and to the right of X, respectively (see Figure 7.1).
As explained in [CaPa08], in the presence of shocks, for correctly dealing
with optimal control and design problems, the state of the system (7.1) has
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t
=T o (T)

=0

Fig. 7.1. The subdomains Q~ and Q*.

to be viewed as being a pair (u, ) combining the solution of (7.1) and the
shock location .

Then the pair (u, ) satisfies the system

(u
@u+8(%)
o

= in Q”UQT,
w@)— Q:[ 20 teO.T) (7.12)
u(z,0) = u’(z), in {x < "YU {z > $°}.

We now analyze the sensitivity of (u, ) with respect to perturbations of
the initial datum, in particular, with respect to variations du’ of the initial
profile u® and d¢" of the shock location ¢°. To be precise, we adopt the
functional framework based on the generalized tangent vectors introduced
in [BrMa95a].

Definition 1 ([BrMa95a]). Let v : R — R be a piecewise Lipschitz continu-
ous function with a single discontinuity at y € R. We define X, as the family
of all continuous paths 7 : [0,&9] — L*(R) with

1. v(0) = v and g9 > 0 possibly depending on .

2. For any € € [0,eq] the functions u® = (g) are piecewise Lipschitz with
a single discontinuity at x = y® depending continuously on € and there exists
a constant L independent of € € [0,£q] such that

0% (x) —v*(2)| < LIz — 2],

whenever y° ¢ [z, z'].
Furthermore, we define the set Ty, of generalized tangent vectors of v as
the space of (6v,8y) € L' X R for which the path y(sy.sy) given by

v+ edv + [U]y Xy+edy,y] if 6y <0,

: 7.13
[y Xiy.ytesy if 6y >0, (7-13)
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satisfies Y(sv,5y) € 2u-
Finally, we define the equivalence relation ~ defined on X, by

|v(e) =¥ ()l
&

~v ~~"if and only if lim =0,

e—0
and we say that a path v € X, generates the generalized tangent vector
(0v, 6y) € T, if v is equivalent to Y(sy,5) as in (7.13).

Remark 3. The path 75,5y € 2, in (7.13) represents, at first order, the
variation of a function v by adding a perturbation function edv and by shifting
the discontinuity by &dy.

Note that, for a given v (piecewise Lipschitz continuous function with
a single discontinuity at y € R) the associated generalized tangent vectors
(6w, 0y) € T, are those pairs for which dv is Lipschitz continuous with a single
discontinuity at z = y.

Let u® be the initial datum in (7.12) that we assume to be Lipschitz
continuous to both sides of a single discontinuity located at z = ¢°, and
consider a generalized tangent vector (du?, d¢%) € L}(R) x R. Let u®€ € X0
be a path which generates (du®,5p°). For ¢ sufficiently small the solution
uf(+,t) of (7.12) is Lipschitz continuous with a single discontinuity at = =
©°(t), for all ¢ € [0,T]. Thus, u®(,t) generates a generalized tangent vector
(bu(-,t),00(t)) € LY(R) x R. Moreover, in [BrMa95b] it is proved that it
satisfies the following linearized system:

Oou + Oy (udu) =0, in Q- UQT,
690/(t)[u]tp(t) + 599(t) (@l(t)[ux]tp(t) - [uxu]go(t))

+ @' (t)[0u] ) — [wduyqy =0, in (0,T), (7.14)
Su(z,0) = du®, in {x <’} U{z > "},
3p(0) = 0",

with the initial data (6u®, §°).
Remark 4. In this way, we can obtain formally the expansion
(tes pe) = (u, ) +&(du, 5p) + O(e?).

Remark 5. The linearized system (7.14) has a unique solution which can
be computed in two steps. The method of characteristics determines du in
Q= UQT, ie., outside X, from the initial data du® (note that system (7.14)
has the same characteristics as (7.12)). This yields the value of u and u, at
both sides of the shock X' and allows the determination of the coefficients of
the ordinary different equation (ODE) that §¢ satisfies. This ODE yields d¢p.

Remark 6. We have assumed that the discontinuity of the solution of the Burg-
ers equation u is present in the whole time interval ¢ € [0,7]. But the discon-
tinuities may appear at time 7 € (0,7") for some regular initial data. We refer
to_[CaPa08] for the lincarization in this case.
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7.4.2 Sensitivity in the Presence of Shocks

In this section we study the sensitivity of the functional J with respect to
variations associated with the generalized tangent vectors defined in the pre-
vious section. We first define an appropriate generalization of the Gateaux
derivative.

Definition 2 ([BrMa95a]). Let J : L'(R) — R be a functional and u° €
LY(R) be Lipschitz continuous with a discontinuity at x = ¢°, an initial da-
tum for which the solution of (7.1) satisfies hypothesis (H). We say that J
is Gateauzx differentiable at u® in a generalized sense if for any generalized
tangent vector (5u°,6¢°) and any family u®c € X0 associated to (5u°, 64°)
the following limit exists:
0,¢ 0
0J = lim —J(u )= Ju ),

e—0 €
and it depends only on (u°, %) and (6u®, 5¢°), i.e., it does not depend on the
particular family u®¢ which generates (6u®, 5¢°).

The limit 0J is the gemeralized Gateux derivative of J in the direction

(6u0, 5°).

The following result provides an easy characterization of the generalized
Gateaux derivative of J in terms of the solution of the associated adjoint
system.

Proposition 1. The Gateaux derivative of J can be written as
8J = / p(z,0)6u’ (z) dz + q(0)[u’] ,05¢°, (7.15)
{z<eu{a>¢"}

where the adjoint state pair (p,q) satisfies the system

_8tp - uaxp =0, in Q_ U Q+7

[p]Z = 0)
q(t) = p(e(t),t), int € (0.T)
¢ () =0, inte(0,T) (7.16)

p(x,T) =u(z, T) —u?, in{r<eT)}uU{z>p)}

o(T) = %[(u(m,T)—ud);}](p(T) ‘

[U]¢(T)

Remark 7. System (7.16) has a unique solution. In fact, to solve the backwards
system (7.16) we first define the solution ¢ on the shock X from the condition
¢ = 0, with the final value ¢(T) given in (7.16). This determines the value
of p along the shock. We then propagate this information, together with the
datum of p at time ¢ = T to both sides of ¢(T), by characteristics. As both
Systems (7.1) and (7 16) have the same characteristics, any point (z,t) €

is reac nptime by a unique characteristic line coming
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either from the shock X or the final data at (z,7) (see Figure 7.2). The
solution obtained this way coincides with the reversible solutions introduced
in [BoJa98] and [BoJa99].

Fig. 7.2. Characteristic lines entering on a shock (left) and subdomains Q™ and
Q" (right).

Remark 8. Solutions of (7.16) can also be obtained as the limit of solutions of
the transport equation with artificial viscosity depending on a small parameter
e =0,

{ —Op — uOyp = €0pyp, nz €R, te (0,T), (7.17)
(x,T) =pL(z), inzeR, '

and a suitable choice of the initial data p! (), depending on n — oo. To be
more precise, let pl(z) be any sequence of Lipschitz continuous functions,
uniformly bounded in BV,.(R), such that

o (@, T) = p'(2) = u(z,T) —u®(x), in Lj,(R),

and
% [(u(‘T? T) - ud)Q] o(T)
[u](p(T) .

We first take the limit of the solutions p. , of (7.17) as € — 0, to obtain the
solution p,, of

o ((1),T) =

—Op—udyp=0, inzxeR, te(0,7T),
p(z,T) = pl(z), inzeR,

which is called the reversible solution (see [BoJa98]). These solutions can be
characterized by the fact that they take the value p,(¢(T),T) in the whole
region occupied by the characteristics that meet the shock (see [BoJa98],
Theorem 4 1.12). Thus, in partlcular they satisfy the 2nd, 3rd, 4th, and 6th
¥ 6). Mor pgas n — oo, and p takes a constant value
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Fig. 7.3. Solution u(z,t) of the Burgers equation with an initial datum having a
discontinuity (left) and adjoint solution which takes a constant value in the region
occupied by the characteristics that meet the shock (right).

in the region occupied by the characteristics that meet the shock. Note that,
by construction, this constant is the same value for all p,, in this region. Thus,
this limit solution p coincides with the solution of (7.16) constructed above.

Formula (7.15) provides an obvious way to compute a first descent direc-
tion of J at u®. We just take

(6u°,6¢°) = (=p(x,0), —¢(0)[u]0)- (7.18)

Here, the value of §¢” must be interpreted as the optimal infinitesimal dis-
placement of the discontinuity of u’.

But this (du?, 5¢?) is not a generalized tangent vector in T}, since p(z, 0) is
not continuous away from z # ©°. A typical example is shown in Figure 7.3.
In [CaPa08] we have solved this drawback by introducing the alternating
descent algorithm, which only uses generalized tangent vectors, distinguishing
those that move the shock and those that do not.

7.5 The Method of Alternating Descent Directions

In this section we briefly present the alternating descent algorithm introduced
in [CaPa08] in the inviscid case.

Motivated by the above discussion, we introduce a decomposition of the
generalized tangent vectors. This requires us first to introduce some notation.
Let

o =p(T) —u (p(M)T. a7 =o(T) —u" (p(T))T, (7.19)
and consider the following subsets (see Figure 7.2):

that © < o(T) —u™ ((T))t},




76 C. Castro, F. Palacios, and E. Zuazua

Q" = {(x.t) € R x (0,T) such that z > o(T) — ut (o(T))t}.

The classification of the generalized tangent vectors in two classes is mo-
tivated by the following result (see [CaPa08]).

Proposition 2. Consider the paths in 3,0 for which the associated general-
ized tangent vectors (du®,6¢%) € Tyo satisfy

ff_o Su¥ + f:: Su?

[u%] o

5" = (7.20)

Then, the solution (du,dp) of system (7.14) satisfies dp(T) = 0 and the gen-
eralized Gateauz derivative of J in the direction (6u®, §¢°) can be written as

oJ :/ p(z,0)6u’(x) dr, (7.21)
{z<z—}u{z>zt}

where p satisfies the system

—0p—udyp =0, nQ UQT,
{ p(@,T) =u(z,T)—ul, in{z<e@}U{z>e)}. (7.22)

Analogously, when considering paths in X0 for which the associated gener-
alized tangent vectors (6u®,d¢°%) € Tyo satisfy Su® = 0, then Su(x,T) = 0
and the generalized Gateaur derivative of J in the direction (5u°, 5¢°) can be
written as

(U(SL’, T) — ud(m))Q [uo]wo
2 o(T) [u(, T)p(r)

6J = — [ 50, (7.23)

Remark 9. Formula (7.21) provides a simplified expression for the general-
ized Gateaux derivative of J when considering directions (du", 6¢") that do
not move the shock position at ¢ = T. These directions are characterized by
formula (7.20) which determines the infinitesimal displacement of the shock
position 6° in terms of the variation of u° to both sides of z = ¢°. Note,
in particular, that to any value du’ to both sides of the jump ¢ there cor-
responds a unique infinitesimal translation d¢® of the initial shock position
that does not move it at ¢t =T

Note also that the value of p outside the region Q_ U Q+ is not needed to
evaluate the generalized Gateaux derivative in (7.21). Solving system (7.22)
is particularly easy since the potential u is smooth in the region where the
system is formulated.

Analogously, formula (7.23) provides a simplified expression of the gen-
eralized Gateaux derivative of J when considering directions (du®, d¢") that
uniquely move the shock position at ¢ = T and which correspond to purely
translating the shock.
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The method of alternating descent directions can then be implemented as
follows, applying in each step of the descent, the following two substeps:

1. Use generalized tangent vectors that move the shock to search its optimal
placement.

2. Use generalized tangent vectors to modify the value of the solution at
time t = T to both sides of the discontinuity, leaving the shock location
unchanged.

One of the main advantages of this method is that the complexity of the so-
lutions is preserved without introducing artificial shocks that are unnecessary
to approximate the target u.

The efficiency of this method compared to the classical one based on purely
discrete approaches or continuous ones that do not make an optimal use of
the shock analysis has been illustrated in [CaPa08] through several numerical
experiments.

Note also that this method is, in some sense, close to the methods em-
ployed in shape design in elasticity in which topological derivatives (that in the
present setting would correspond to controlling the location of the shock) are
combined with classical shape deformations (that would correspond to simply
shaping the solution away from the shock in the present setting) ([GaGu01]).

7.6 Alternating Descent Directions in the Viscous Case

The linearized Burgers equation reads as follows:

{ 00U — Vg + Oz (udu) = 0, in R x (0,00), (7.24)

Su(z,0) = 6u®, in R.

In this case the derivation of this linearized equation is straightforward be-
cause of the smoothness of solutions.
Moreover, the Gateaux derivative of the functional J is as follows:

§J =< 6J(u?), 6u’ >= /p(x,O)&uO(a:) dz, (7.25)
R

where the adjoint state p = p, solves the adjoint system

{ —Op — UPgr —u0ep =0, ImR, 0<t<T, (7.26)

p(x,T) = u(z,T) —ud, inR.

In this case, unlike the inviscid one, the adjoint state has only one com-
ponent. Indeed, since the state does not present shocks, there is no adjoint
shock variable. Similarly, the derivative of J in (7.15) exhibits only one term.
According to this, the straightforward application of a gradient method for
the optimization of J would lead, in each step of the iteration, to the use of
variations pointing in the direction
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ou’ = —p(x,0),

p being the solution of this viscous adjoint system. But, proceeding in this
way, we would not exploit the possibilities that the alternate descent method
provides.

To do this we must also consider the effect of possible infinitesimal trans-
lations of the initial data. Indeed, the previous calculus is valid when the
variations of the initial data are of the form

ul(z) = u’(x) + edu’(x). (7.27)

But, in order to consider the possible effect of the infinitesimal translations,
we have to use rather variations of the form

ul(z) = u®(x + e0¢°) + edu®, (7.28)

where, now, ¢ stands for a reference point on the profile of u°, not necessarily
a point of discontinuity. When u° has a point of discontinuity, ¢ could be its
location and 6¢° an infinitesimal variation of it. But ¢ could also stand for
another singular point on the profile of u°, e.g., an extremal point, or a point
where the gradient of u is large, i.e., a smeared discontinuity.

Note that, by a Taylor expansion, when considering variations of this form,
to first order, this corresponds to

ul(z) ~ u®(z) + edul (z) + e0’ul (z). (7.29)

This indicates that the result of these combined variations (du", 6¢V) is equiv-
alent to a classical variation in the direction of du® + §p%ul. When u° is
smooth enough, for instance, u° € H!, then, this yields a standard variation
in an L? direction. But when u° lacks regularity, for instance, when u° has
a point of discontinuity, this yields variations that are singular and contain
Dirac deltas. Similarly, when u° is smooth but has a large gradient, we see
that the effect of a small 6¢° is amplified by the size of the gradient.

The corresponding linearization of the Burgers equation is as follows:

{ 00U — VOUgg + Oy (udu) =0, in R x (0,00), (7.30)

Su(z,0) = su(z) + 0wl (z), in R.

Again, the derivation of this linearized equation is straightforward because of
the smoothness of solutions.
In view of (7.30) the linearization of the functional is as follows:

5J/RP(IE,O)5UO($) dx+5g00/Rp(x,O)ug($) dx, (7.31)

where the adjoint state p = p, is as above.
When u° is piecewise smooth but it has a discontinuity at = = ¢°, this
variation can be written as follows:
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5. — / p(z,0)5u°(z) d+5¢° / p(,0)u(z) dz+ 6" [ pop (0, 0),
R R

—{¢°}
(7.32)
where [u%],_,0 stands for the jump of u® at z = ¢°.
When comparing this expression with (7.15), we see that there is an extra

term, namely,

5500/ p(z,0)ul(x) du,
R—{x°}

which corresponds to the fact that the variations considered in the inviscid
case by means of the generalized tangents and (7.30) only coincide with those
considered here when wug is piecewise constant with a shock at ¢". When
the initial datum has a discontinuity at z = ¢°, a slight change in the way
the variations (7.28) are defined, considering the vectors in (7.13), leads to
an expression which is closer to (7.15). This is done translating the point of
discontinuity by adding as in (7.13) a characteristic function of the amplitude
of the jump of u° so that the jump point is shifted infinitesimally to the left
or to the right, but without adding any extra variation on the initial profile
u” due to this shift.

But, let us continue our analysis by keeping the class of variations (7.28),
supposing that 1% is continuous. We can rewrite the first variation of J as
follows:

6J = /p(m,O)[éuO(:c) + 0¢%ul (2)] da. (7.33)

In the inviscid case, to develop the method of alternating descent, we
distinguished the variations of the initial datum moving the shock and those
that did not move it by modifying the profile away from it. This discussion
does not make sense as such in the present setting since the solutions of
the viscous state equation are now smooth. However, from a computational
viewpoint, it is interesting to develop the analogue of the alternating descent
method.

For this to be done, one needs to distinguish two classes of possible varia-
tions. But this time one has to do it without having, as in the inviscid case,
the shock location and its region of influence at ¢ = 0 which, in that case, we
identified with the interval [z, z"] as in (7.19).

Let us however assume that the viscosity parameter v is small enough, so
that viscous solutions are close to the inviscid ones, and develop a strategy
inspired in the way that the alternating descent direction was built in the
inviscid case. For it to be meaningful, we need to identify a class of initial
data for which the alternating descent method might be more efficient than
the classical one, which consists in simply applying a descent algorithm based
on the adjoint calculus above. We will identify this class as the one in which
the initial data u? leads to a discontinuous solution in the inviscid case.

Assume, to begin with, that u" has a discontinuity at ¢° and that it is
smooth to both sides of it. The viscosity parameter v being positive, even if
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it is small, the solution is smooth and, therefore, it may not develop shocks.
However, taking into account that solutions are close to the inviscid ones,
when the latter exhibit shocks, the viscous ones will develop regularized quasi-
shocks. Therefore, one could try to mimic the same procedure for the viscous
case. The first thing to be done is to identify the region of influence [z~, z "]
of the inner boundary of the inviscid adjoint system. But, of course, this
should be done without solving the inviscid adjoint system which, on the
other hand, would require solving the inviscid state equation. We therefore
need an alternate definition of the interval [z~,z"] to that in (7.19) which
might be easy to compute. To do that it is necessary to compute the curve
where the shock is located in the inviscid case. This can be done by solving
the ODE given by the Rankine-Hugoniot condition:

¢'(t) = [u (p(t),t) +u™(p(t), )]/2, t€(0,T). (7.34)

Here ut and u~ stand for the value of the solution u of the inviscid prob-
lem at both sides of the shock. They can be computed by the method of
characteristics so that

uE(p(t),t) = u(s*(t), te€(0,T), (7.35)

where sT(t) is the spatial trajectory of the characteristic which arrives to
(¢(t),t) starting from ¢ = 0, and we solve

sE() + O E(sT (1) = p(t), te(0,T). (7.36)

Substituting (7.35) and (7.36) into (7.34), the ODE for the shock then reads

(1) = [W(sT (1) +u’(s(1))]/2, te(0,T), (7.37)
and
ot = sT(T). (7.38)
Once this is done, we need to identify the variations (6u?, d¢°) such that
zt
/ p(x,0)[6u’ (z) + 5 ul (x)] da = 0. (7.39)

If p(z,0) were constant within the interval [z, 2"] as in the inviscid case,
this would amount to considering variations such that

z_+ Sul(z)dz
5o = —uojé o 10)(,@—)' (7.40)

There is no unique way of doing this. One possibility would be to consider
+
variations §u’ in [z~, 2 "] such that [ §u’(z)dz = 0 and 6¢° = 0.
he variation of the functiona ould then be
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0J = / p(z,0)0u’ (z)dz, (7.41)
{z<z=}n{z>zt}

and the optimal descent direction
sul(x) = —p(z,0), in {x<z }n{z>azt} (7.42)

This discussion leads to considering “descent directions” of the form (7.42),
where p is the solution of the adjoint viscous system and the extremes of the
interval 2% are computed according to (7.36)(7.38). Furthermore, §u° has to

be extended to [z ™,z "] so that f;f dul(x)dz = 0 and 6¢° = 0. Note also that,
as observed in [CaPa08], it is convenient to choose du’ which is continuous
away from ¢° to guarantee that the deformations under consideration do not
increase the number of possible discontinuities of u". Obviously, this is possible
within the class of variations we have identified.

This class of deformations has been identified under the assumption that
p(x,0) is constant within the interval [z, z "], a property that is indeed true
in the inviscid case but not in the viscous one. The rigorous analysis of the
convergence of the adjoint states as the viscosity parameter v tends to zero,
and the possible improvement of the class of variations above, is an interesting
topic for future research.

The second class of variations is the one that takes advantage of the in-
finitesimal translations d¢°. We can then set éu’ = 0 and choose 64" such
that

50 — — / p(z, 062 (2) da — [u]oe pop(°, 0).
R—{¢°}

As mentioned above, we could consider slightly different variations of the
initial data of the form

0" = —[u’]s=pop(¢",0),
as in [CaPa08].

On the other hand, in the inviscid case, p(¢,0) coincides with the value
of p at time ¢ = T at the shock location and, therefore, this descent direction
can be computed without performing any numerical approximation of p. This
is no longer the case in the present viscous setting in which p(¢?, 0) is a priori
unknown. To simplify the choice, we can use the proximity of the inviscid ad-
joint state and the viscous one. When doing this and using the above (slightly
different) variations of the initial data, the choice for 5¢°, inspired by (7.23),
would be
(u(z,T) — u’(x)) [4°] o

2 o(T) [u('aT)]go(T)7

where ¢(T") is the location of the shock in the inviscid case which, in view
of (7.36)—(7.38), is given by

Sp¥ =

o(E)y=a—tdu(@ ™) = o7 + Tul(zT).
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Similarly, in the inviscid case, the computation of the jump of w(-,T) and
(u(z,T) —ud(x))? at © = ¢(T) can be greatly simplified since the values of u
at t =T at both sides of the discontinuity = ¢(7T") can be computed by the
method of characteristics and coincide with u°(z%).

In this way, we have identified two classes of variations and its approxi-
mate values inspired in the structure of the state and the adjoint state in the
inviscid case, allowing us to implement the method of alternating descent in
the inviscid case when 1" is discontinuous.

This analysis can be extended to the case where u® is smooth but the
corresponding solution of the inviscid problem develops shock discontinuities
in some time 0 < 7 < T. This can be fully characterized in terms of u°, as is
well known. Then, the analysis of the previous case can be applied with the
possible variant discussed in [CaPa08] when the shock does not start at ¢ = 0
but rather appears in a time 0 < 7 < T

In this way one can handle, for instance, the prototypical solutions of the
viscous Burgers equation that, as v — 0, converge to shock solutions ([Wh74]).
These are the smooth traveling wave solutions of the viscous Burgers equa-
tion (7.2) taking values uy at +oo, of the form,

U_ —ug
1+ exp[(u_ —uy)(z —ut)/2v]’

uy(z,t) = ug + (7.43)

where
= (u_+uy)/2. (7.44)

When u_ > uy and v — 0, they converge to the shock solution of the inviscid
Burgers equation taking values u, for x > ut and u_ for z < ut.

The efficiency of the method developed in this section is illustrated by
several numerical experiments in the following section.

7.7 Numerical Experiments

In this section we focus on the numerical approximation of the optimization
problem described in this chapter. The first natural question is the choice
of the numerical method to approximate both the Burgers equation and its
adjoint.

Let us introduce a mesh in R x [0,T] given by (z;,t") = (jAz,nAt)
(j = —00,...,00; m = 0,...., N + 1 so0 that (N + 1)At = T), and let u} be
a numerical approximation of u(z;,t™) obtained as a solution of a suitable
discretization of the Burgers equation.

As we are assuming the viscosity parameter v to be small, it seems natural
to consider a viscous perturbation of the most common numerical schemes
for conservation laws. Accordingly, let us introduce a 3-point conservative
numerical approximation scheme for the nonlinearity and an explicit scheme
for the viscosity:
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At At
“?H = uj - Az (9?+1/2 - 9?—1/2) TV (uf_1 = 2uj +uffyy),
j€Z, n=0,..,N, (7.45)
where

9?4-1/2 = g(“?a U;'L-H)a
and g is the numerical flux. These schemes are consistent with the viscous
Burgers equation when g(u,u) = u?/2 since, in this case, both the nonlinear
part and the viscous perturbation are consistent.
In order to analyze the scheme (7.45), we note that it can be written as a
conservative numerical scheme with the modified numerical flux,

Guis (U, v) = g(u,v) — ﬁ(v —u). (7.46)

In particular, the stability analysis can be obtained from the classical analysis
for conservative schemes.

It is interesting to observe that the stability of these numerical schemes
is not granted from the stability of the underlying conservative scheme for
the inviscid Burgers equation. To clarify this issue, we divide the rest of this
section into two more subsections. In the first one we analyze the stability
of the numerical schemes written in the form (7.45) and we introduce a con-
vergent numerical scheme. The second subsection is devoted to illustrate the
numerical results for the optimization problem.

7.7.1 Discussion of the Stability of the Viscous Versions of
Hyperbolic Conservative Schemes

We first focus on the von Neumann analysis for the stability of the simpler
linear equation,
U + auy = VUg,, With a constant. (7.47)

We follow the analysis in [GoRa91] for conservative schemes. It is well known
that any 3-point conservative numerical scheme can be written in viscosity
form as

ntl_ o At Ui —uiy o uj, —2uftup,

u J=

Y I Az 2 2 ’

(7.48)

for some viscosity coefficient ¢. Therefore, the numerical scheme (7.45) can
also be written as (7.48) with the new viscosity coeflicient,

q+ 2 Al
= V——s.
q9=4q Ar2
Taking into account that uj,, ~ u(z; + Axz,t,), if we write z; = x and

consider the Fourier transform in x, we obtain
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u™ () = h(n)a"(n).

The value h(n) represents the amplification factor that must be smaller than
one in modulus to guarantee stability. In this case,

(AL
h(n) = 1-q(1—cosnAzx)— zEasmnAas.

If we write
y = sin(nAz/2)?,

then

2
) = (- 200?44 (Fha) 1)

It is not difficult to show that a necessary and sufficient condition for the
L2-stability, i.e., |h(n)| < 1, is to have

At? <qg=q¢+2 At <1.
7=a% VA2 =

From this condition we easily deduce that not all convergent numerical
methods for solving the inviscid Burgers equation are stable when adding the
dissipative term v AAJZ (u?_y —2ul +ul, ), even for arbitrarily small At. For
example, in the Lax—Friedrichs scheme the numerical flux is given by

u—+v v—u
2 2At Az’

glf(u7 v)=a

and § = 1. Therefore, it becomes unstable as soon as v > 0, whatever the
choice of At is.

In the following experiments we have chosen the numerical flux associated
to the Engquist—Osher scheme. For the linear equation (7.47) the numerical
flux is reduced to

p L Ch i (e 1)

In this case, ¢ = |a| 4% and the scheme is stable as soon as

Az?
A< ——m——,
= Azla| + 2v

In the nonlinear case, the numerical flux associated to the Engquist—Osher
scheme is given by

u(u+Jul) | vlw—Jol)

geo(u’ 'U) = 4 4

Generally speaklng, the stablhty of these schemes for the nonlinear vis-
ca ained from the stability analysis for general
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conservative schemes, since they can be written in conservative form with the
modified flux (7.46).
It is well known that such schemes admit the following viscous form:

ner _ o AP = ) | Qjrya(vien = 05) = Qjoaya(vy — v-1)
T A 2 2 ’

u

where At
Qjt1/2 = A_x(f(u?—i-l) + f(“?) - nggs(u?’u?+l))7

and that the scheme is total variation diminishing (TVD) if (see [GoRa91],
p. 136)
At
Az

fujy) + f(uf)

n _am
Ujpr — Uy

S Qjt12 <L

Thus, this numerical scheme is stable if the following condition is satisfied:

At At
2 —_ <
T twis <L (7.49)

(max 1)

7.7.2 Numerical Experiments for the Optimization Problem

In this section we present some numerical experiments to illustrate the results
of the previous sections. We pay special attention to showing the applicability
of the alternating descent method.

We emphasize that the solutions obtained with each method may corre-
spond to global minima or local ones since the gradient algorithm does not
distinguish them.

We consider an exact solution of the Burgers equation obtained as a trav-

eling wave
1 x—1/2
=—(|1- h .
u(z,t) 5 ( tan e )

This solution is smooth for v > 0 but, as v — 0, it approaches a piecewise
constant function with a discontinuity at x = ¢/2, ¢t € [0,1]. We choose the
final time 7' = 1 and the target u¢, different for each value of the viscosity
parameter, given by

14

uld = % (1 — tanh x—4_T/2) . (7.50)

Note that the functional attains its minimum value, J = 0, and a minimizer
is given by

WOmin — % (1 — tanh 4%) . (7.51)

The interval (—6,6) has been chosen as the computational domain, and
we have taken as boundary conditions, at each time step t = t", the value of
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To illustrate the efficiency of the alternating descent method, we have
solved the optimization problem with a descent method using the usual adjoint
formulation and with the alternating descent method, for different values of
the viscosity parameter v = 0.5,0.1 and v = 0.01.

We also consider Az = 0.02 and At = Az?/2, which satisfies the stability
condition (7.49).

It is interesting to compare the relation between the physical viscosity
parameter v and the numerical viscosity introduced by the Engquist—Osher
scheme itself. Observe that the last term in (7.48) can be written as

Az At n
(|a|7 + l/) A2 (ufiq —2uj +uj_y),

which allows us to compare the influence of these two quantities on the nu-
merical solution. In the case v = 0.01 and when |a| = 1, the physical viscosity
is of the order of the numerical viscosity introduced by the Engquist—Osher
scheme for the inviscid Burgers equation, i.e., |a|% = 0.01]a| = v. Thus,
v = 0.01 can be interpreted as the numerical solution of the inviscid Burgers
equation.

Note that this is not an unusual situation in transonic aerodynamic ap-
plications of fluid dynamics problems. In those problems, the thickness of the
shock wave is too small to be resolved by a computational mesh. The numer-
ical dissipation dominates the physical one, unless an exceptionally fine mesh
is set up. In these cases, it is natural to obtain approximate solutions using
numerical methods for inviscid flows (see [Hi88], Chapter 22).

We solve the optimization problem starting either with u® = 0 or the
following;:
uo{ 2if x < 1/4,

0ifx >1/4,

which has a discontinuity at © = 1/4. A discontinuous function is suitable
for the alternating method while, for the classical adjoint method, a smooth
initialization is a priori more natural.

In Figure 7.4 we show numerical experiments for three different values of
the viscosity parameters v = 0.5,0.1 and v = 0.01 in different rows. At each
row, the left figure corresponds to the initial data u° obtained after optimiza-
tion when the gradient is computed with the adjoint method, initialized with
u® = 0 and the u° given in (7.52), as well as the alternating method initial-
ized with the discontinuous function in (7.52). In the figure on the right, the
solutions at the final time ¢ = 1 are drawn.

In Figure 7.5 the values of the functional versus the iteration are shown
for each method and the different values of v described before.

We see that for large values of the viscosity v the classical adjoint method
starting with the smooth data u® = 0 is preferable. When v becomes smaller,
the efficiency of the algorithm does not depend very much on the initialization,
and both-u’ = 0.and the one.in(7.52) provide similar results.

(7.52)
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— Exact — Exact
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Fig. 7.4. The upper figures correspond to the value of the viscosity v = 0.5, the
middle ones correspond to ¥ = 0.1 and the lower ones correspond to v = 0.01. The
left figure of each row contains: Exact initial data (Exact), initial data obtained
from the descent algorithm with the classical adjoint method initialized with u® = 0
(Adjoint), the same initialized with (7.52) (Adjointl) and the alternating descent
method described in this paper and initialized with (7.52) (Alternating). The right
figure of each row contains: Exact solution at ¢ = 1 (Exact) and solutions obtained
with the different methods described.
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—Adjoint L —Adjoint " — Adjoint
---Adjoint1 of\v ---Adjoint1 o\, ---Adjoint1
Alternating 2 Alternating ) Alternating

Fig. 7.5. Values of the functional versus iterations of the descent method, for the
different methods with viscosities v = 0.5 (left), v = 0.1 (middle), and v = 0.01
(right).

Fig. 7.6. Adjoint solutions corresponding to the solution w in Figure 7.3 for different
viscous values v = 0.5 (upper left), v = 0.1 (upper right), and v = 0.01 (lower left)
and the exact adjoint solution (lower right).

On the other hand, the alternating descent method is more efficient when
the viscosity becomes sufficiently small; especially in those cases where v is
of the order of the numerical dissipation. Let us briefly explain this. In this
nonlinear situation, the numerical dissipation is given by |u|% Taking into
account that our target is a function which takes values in the interval [0, 1],
it is natural to assume that the numerical optimal solution will take values
in a neighborhood of [0, 1]. Thus, according to our choice of Az = 0.02, the
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numerical dissipation will be at most of the order of 0.01, depending on the
value of the numerical solution u} at each point of the mesh. If we incorporate
a physical viscosity v = 0.01, we introduce a perturbation which is of the order
of the maximum value of the numerical dissipation.

In Figure 7.6 it is shown that, in this case, the solutions of the adjoint sys-
tem are closer to the solutions of the adjoint system for the inviscid equation

given in Figure 7.3.
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8.1 Introduction

In this chapter we investigate how to apply a high-order finite volume method
to discretize the model proposed in [FeBo08] to study submarine avalanches.

The model proposed by Fernandez-Nieto et al. in [FeBo08] is an integrated
two-layer model of Savage-Hutter type. The upper layer models the fluid,
and the second layer is assumed to be constituted by sediment or rocks. The
derivation of the model is done by taking into account some physical properties
of both layers: density, porosity, friction angle in a Coulomb law, internal
friction angle between particles, and buoyancy.

The previous model reduces to the one proposed by Savage and Hutter
to study avalanches of granular materials when the height of the water layer
tends to zero. In the pioneering works of Savage and Hutter (see [SaHu91])
a model to study avalanches over an inclined slope is proposed. They derive
their model by integration of Euler equations and assuming a Coulomb friction
law. Bouchut et al. in [BoMa03] propose a generalization of the model in order
to take into account more general topographies. In particular, the angle of the
bottom with the horizontal is not constant and depends on spatial variables.
They show that a new term depending on the curvature is necessary to be
introduced in the model in order to preserve stationary solutions and to verify
an entropy inequality.

In [FeBo08] a first-order finite volume method is also proposed. In this
work we propose a high-order finite volume method to discretize the two-
layer Savage-Hutter model. We also study numerically the dependency of the
sediment layer profile and the generated tsunami with respect to some of the
parameters of the model, such as the friction angle in the Coulomb law and
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the ratio of densities between both layers. The effective angle of repose of the
sediment layer after an avalanche is also measured at the stationary state.

This chapter is organized as follows. In Section 8.2, the submarine avalanche
model is briefly presented. In Section 8.3 we summarize how to discretize the
model by using a high-order finite volume method by state reconstructions.
Finally, in Section 8.4, we present a battery of numerical tests, to investigate
the effective angle of repose of the material after an avalanche, and to study
the buoyancy effect in the final stationary solution.

8.2 Submarine Avalanche Model

In this section we present the model proposed in [FeBo08]. For brevity, we
consider only the case of a bottom with constant slope, and the porosity of
the sediment layer is set to zero.

We use the following notation: by hy we denote the height of the fluid layer,
by g1 the discharge of the fluid layer, ho denotes the height of the sediment
layer and g its discharge (see Figure 8.1). We consider that the bottom is an

hy

e

X

Fig. 8.1. Sketch of the domain.

inclined plane with a constant slope defined by the angle 6. Let us consider
local coordinates over the inclined plane, if X is the local spatial variable and
x the Cartesian coordinates, X = zcos(f), with X € [0, L], where L is the
length of the domain. ¢ denotes the time variable, usually, ¢ € [0,T] where T
is the final time. The model is defined by

Oh1 + 0xq1 =0,

Orq1 + Ox (lqz_%l + gh; cos(9)> = —ghy sin(0) — ghy cos(0)0x ha,

Oihs 4+ 0xq2 = 0,

in(6) — rghg cos(0)dxhy + T,
(8.1)

ol Lal Zyl_i.lbl
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where by 7T, we denote the Coulomb friction term. This term must be under-
stood as follows:

T >0 =  T=-g(1—1)hs cos(@)%t&n(&)), (8.2)
2

T <o = qu=0, (8.3)

where o, = g(1 — r)hg cos(6). Moreover, we have denoted r = £ where p;

is the density of the fluid and ps is the mean density of the sediment layer.
Finally, the Coulomb friction term is defined in the function of the friction
angle 4g.

Observe that the presence of the term (1 — ) in the definition of the
Coulomb friction term is due to the buoyancy effects, which must be taken
into account only in the case that the sediment layer is submerged in the fluid.
Otherwise, this term must be replaced by 1.

8.3 High-Order Finite Volume Method

In this section we briefly describe how to discretize (8.1) by using a high-
order finite volume method with state reconstructions. We apply the method
proposed in [CaGa06] with a special treatment of the Coulomb friction term.

Let us rewrite model (8.1) as a hyperbolic system with conservative terms,
source terms, and nonconservative products:

W + Ox F(W) = S(W) + B(W)dx W, (8.4)

where by W we denote the vector of unknowns, F(W) is a flux function,
and S(W) is the source term, which contains the topography terms and the
Coulomb friction term. Finally, B(W)0xW contains the coupling terms. Con-
cretely,

hi , Q12

W = q1 7 F(W) _ q1 /hl + ghl COS(Q)/2 \
ha q2
% q3/h2 + gh3 cos(6) /2

S(W) = Sp(W) + Sr(W),

0 0
—ghq sin(0 0
saw)= | IO gy =] 0
—gha sin(6) T
and
0 0 0 0
_ 0 0 —ghicos(f) 0
BW) = 0 0 0 0
0 0 0
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Due to the nondivergence form of the equations, the notion of solutions
in the sense of distributions cannot be used. The theory introduced by Dal
Maso, LeFloch, and Murat [DaLe95] is followed here to define weak solutions.
This theory is based on the introduction of a family of paths. Therefore, the
numerical scheme is also based on the choice of a family of paths. For more
details see [Pa06].

To construct the numerical scheme, (8.4) is rewritten as follows: first, the
bottom topography b(X) = sin(0)X is defined. Note that Sp can be rewritten

in terms of dxb(X). Next, we define W= (W, b)T
W + AW)oxW = Sr(W), (8.5)

where A is defined in terms of the Jacobian matrix of F(W), B(W), and
Sp/sin(d), and S = (Sr,0)T.

The left-hand side of (8.5) is discretized using a high-order Roe method
with state reconstruction introduced in [CaGa06], while St is descretized in
a centered way as described in [FeBoO08]. Let us consider a partition of the
interval [0, L] in cells defined by I; = [XZ 172, Xig1 /2] Let us suppose that
all of them have the same length AX and X; 1 =iAX. X; = (i — 1/2)AX
is the center of the control volume I;. Let At be the time step and t™ = nAt.

Then, we denote by W[’ an approximation of the mean value of W over
I; at time t = t",

TR s
i = Ax / 1 (X, t")dX.
i—1/2
Let us define a Roe matrix for system (8.5) (see [T092], [Pa06] for details).

Definition 1. For a given family of paths ¥, a function A : 2 x 2 — My is
a Roe linearization of system (8.5) if it satisfies the following properties:

1. For each WL, WR € 0, .AW(WL, WR) has N real and different eigenvalues.
2. Ag(W, W) ( ), for all W € 0.
3. For each WL, WR € (2,

Agp(WL,WR)(WR - WL) = /0 A [W(S;WL,WR)] %—f(s; Wi, WR)d&
(8.6)

Let us denote

Avvrje = Au (W W) (8.7)

the Roe matrix associated to the states Wz and Wi+1, with eigenvalues

A2 < ATV <N

Ol LE Zyl_i.lbl
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and {RZH/ 2} is the base of the associated eigenvectors. By IC;i;/o we

denote the N x N matrix whose columns are eigenvectors and by L; i1/,
the diagonal matrix of elgenvalues We will also use the followmg matrices:

+ i+1/2\4
Lty = diag(A, )5 1= N, ‘Az+1/2 = ’Cz+1/2£z+1/2 z+1/2'
A state reconstruction operator P? is considered, that is, an operator that

associates, to a given sequence {Wl(t)}, two new sequences {W;l /2(t)},

{W:H /2(1&)} in such a way that, whenever

W;(t) = ﬁ /1 W(X,t)dX, Vi

for some regular function W, then

Wi:il/Q(t) = W(Xi+1/27t) + O(AXP), Vi.

Over each control volume I;, at each instant ¢ > 0, we define a regular function
P! such that

th—)X"' ‘Pzt(X) = Witl/z(t)’ th—)X‘ Pz( ) W@11/2( )

i—1/2 i+1/2
(8.8)
The following numerical scheme is considered (see [CaGa06]):
—~ 1 — _
W, = —E<AZF_1/2(W;£1/2() W 1/2( )
+‘Az+1/2( z+1/2( ) W;—l/2( ))
i+1/2 d .
b AP ) e PO00X) 48 69)
Xi—1/2 dX

where §7—,¢ is a centered discretization of the Coulomb friction term 7 defined
by (8.2)—(8.3). See [FeBo08] for more details about the definition of gfrz

Here, Marquina’s local piecewise hyperbolic reconstruction in space
(see [Ma94]) is used. For the time discretization a Runge-Kutta third-order to-
tal variation diminishing (TVD) scheme has been used. The resulting scheme
is third-order accurate in space and time and linearly stable under the usual
CFL condition:

A
A;( max{NiFV? =1, N} < CFL, Vi, (8.10)

where CFL € (0,1].
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8.4 Numerical Tests

A battery of numerical tests is presented here to study numerically the depen-
dency of the sediment layer profile and the generated tsunami with respect to
the friction angle §y and the ratio of densities, 7. The effective angle of repose
of the sediment layer after an avalanche is also measured at the stationary
state. Let us consider a rectangular channel of 10 m length, centered at the
origin, with a flat bottom topography, that is, # = 0. As an initial condition,
we set g1 = g2 = 0 and

1, if —1<X<I1,

if —1< <
hz(X’O):{O 1, if —1<X <1,

otherwise, hi (X, 0) = { 2,  otherwise.

Free boundary conditions are imposed at both channels ends. The CFL pa-
rameter is set to 0.8. In the simulations, wet/dry fronts appear. Here, we use
the numerical treatment proposed by Castro et al. in [CaFe05].

In Figure 8.2 we compare the final stationary interface that we obtain
for three different meshes with AX € {0.1,0.05,0.02} for r = 0.4 and §y =
20°. Only some small differences near the “wet/dry” fronts can be observed.

Sediment layer
07 T T T

* DX=0.10

061

051

041

031

021

01

Fig. 8.2. Sediment layer at stationary state AX € {0.1,0.05,0.02}, (6o = 20°,
r=4).

Table 8.1 shows the maximum and the mean effective angle of repose of the
sediment layer after the avalanche at the stationary state. As expected, the
maximum value is under §y = 20°, while the mean value is close to 8.5°.
Figure 8.3(a) shows the profiles of the sediment layer at the stationary
state for r = 0.4, AX = 0.05, and §p € {10°,15°,20°, 25°,30°}, and Table 8.2
shows the maximum and mean effective angle of repose of the sediment layer
after the avalanche. As expected the maximum value is always under Jg.
Figure 8. hows the 1m of the free surface, n = hy + ho — 2.0, vs.
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Table 8.1. Effective angle of repose (r = 0.4, do = 20°).

AX|| max |mean||AX| max |[mean||AX|| max [mean
0.1/18.03°|8.43°{|0.05(|19.16°|8.46°{|0.02|(19.69° | 8.46°

Table 8.2. Effective angle of repose (r = 0.4).

| 6o || max [ mean [ d || max | mean || 6o || max [mean]||
10°][ 9.82° | 2.84° |[15°||14.51°| 5.35° {|20°]{19.16°|8.46°
252(123.90°(12.05°(|30°]|29.42°(16.13°

do. Figure 8.3(b) gives an idea of the amplitude of the generated tsunami. Note
that the amplitude decreases for bigger values of the parameter dy. Finally,
Figure 8.4 shows the free surface evolution from ¢ = 0.2 s to t = 0.8 s, for g €
{10°,15°,20°,25°,30°}. As mentioned before, the amplitudes of the waves are
bigger for smaller values of the friction angle Jp, while the wave speeds are
approximately the same for the different values of 0y (see Figure 8.4).

Now, the parameter dy is set to 20° and r € {0.0,0.1,0.2,0.3,0.4}. Fig-
ure 8.5(a) shows the profiles of the sediment layer at the stationary state for

0 Sediment layer 011
. T . - = an§=10
—+— ang=157

02 — aneg0] o105
—e— ang=30°)

0.7

e

0.6

0.5

04

Max Free surface
o
g

g

0.3
0.2

0.1}

% 0

0 S — 10 15 2

5 4 3 2 4 0 1 2 3 4 5 Friction angle

(a) Sediment layer depth at station- (b) Maximal height of the free sur-
ary state face

Fig. 8.3. Sediment layer depth at the stationary state and maximal height of the
free surface for r = 0.4 and do € {10°,15,20°,25°,30°}.

ol Lal Zyl_i.lbl
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AX = 0.05, and Table 8.3 shows the maximum and mean effective angle of
repose of the sediment layer after the avalanche.

Free surface at t=0.2 s.

015 — . 0.15

0.1

0.05

04

-0.05

-0.15

(a) Free surface at t=0.2 s. (b) Free surface at t=0.4 s.

Free surface at t=0.6 s. Free surface att=0.8 s.

0.1 0.1

0.05 0.05

-0.05) -0.05

0.1
; =

(c) Free surface at t=0.6 s. (d) Free surface at t=0.8 s.

Fig. 8.4. Free surface evolution for r = 0.4 and do € {10°,15°,20°,25°,30°}.

Again, the maximum value is always under dy. Note that the maximum
value decreases with r while the mean increases with respect to r. Nevertheless,
the variations are not significant. More differences can be observed in the

(See Figure 8.5(&)), in parlicular, the
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0.22

Sediment layer
0.7 T T T
0.2
0.18f
Q
Q
& 016
3
[
]
N 0.14f
x
s
0.12F
01F
U'MO 0.‘05 0‘.1 0.‘15 0‘.2 0.‘25 0‘.3 0.‘35 0.4
ratio of densities
(a) Sediment layer depth at station- (b) Maximal height of the free sur-
ary state face

Fig. 8.5. Sediment layer depth at the stationary state and maximal height of the
free surface for do = 20° and r € {0,0.1,0.2,0.3,0.4}.

Table 8.3. Effective angle of repose (dp = 20°).

[ || max [mean| r || max [mean|| r || max [mean]|

0.0(|19.64°|8.07°(|0.1{{19.56°|8.22°]|0.2{{19.37°|8.30°
0.3(/19.23°|8.41°||0.4({19.16°|8.46°

position of the front decreases with r, as well as the maximum height of
the sediment layer. Figure 8.5(b) shows the maximum of the free surface,
n = hy+ho —2.0, vs. . As expected, the amplitude of the generated tsunami
is bigger for smaller values of r. Finally, Figure 8.6 shows the free surface
evolution from ¢ = 0.2 s to t = 0.8 s, for r € {0.0,0.1,0.2,0.3,0.4}. Note that
the wave speeds at the free surface are quite similar, being a bit bigger than
those corresponding to r = 0.0.

Acknowledgement. This research has been partially supported by the Spanish Go-
vernment Research project MTM2006-08075. The numerical computations have
been performed at the Laboratory of Numerical Methods of the University of
Malaga.
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Free surface att=0.2 s. Free surface at t=0.4 s.

0151

0.1+

0.05-

04

-0.051

0.1t

0151

.2

025
5

(a) Free surface at t=0.2 s. (b) Free surface at t=0.4 s.

Free surface at t=0.8 s.

02 T

Free surface at t=0.6 s.
T : T T T . T 02

(c) Free surface at t=0.6 s. (d) Free surface at t=0.8 s.

Fig. 8.6. Free surface evolution for §o = 20° and r € {0,0.1,0.2,0.3,0.4}.
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Convolution Quadrature Galerkin Method for
the Exterior Neumann Problem of the Wave
Equation

D.J. Chappell

University of Nottingham, UK; david.chappell@nottingham.ac.uk

9.1 Introduction

The wave equation is important for many real-world applications in time-
domain linear acoustics, including scattering from aircraft components and
submarines and radiation from loudspeakers. The latter example forms the
underlying motivation for the present study. Here the problem is to be solved
on an unbounded exterior domain, and so the boundary integral method is a
powerful tool for reducing this to an integral equation on the boundary of the
radiating or scattering object.

Time-domain boundary integral methods have been employed to solve
wave propagation problems since the 1960s [Fr62]. Since then, increasing com-
puter power has made numerical solutions possible over longer run times, and
so long-time instabilities in the time marching numerical solutions have be-
come evident [Bi99, Ry85]. A number of methods have been suggested to
resolve this such as time averaging [Ry90] and modified time stepping [Bi99].
Using an implicit formulation with high order interpolation and quadrature
was also found to give stable results for all practical purposes [B196, Do98|.
Terrasse et al. [HaD03] obtained stable results using a Galerkin approach
and used an energy identity to prove stability of the Galerkin approxima-
tion. A stable Burton—Miller type integral equation formulation has also been
developed in the time domain [ChHa06, Er99]. In addition, the convolution
quadrature method of Lubich [Lu88a, Lu88b] has been applied to a number
of problems [Ab06, Ban08, Sc01] and has been shown to give stable numerical
results. However, computations for the wave equation tend to be for either
two-dimensional or very simple three-dimensional cases such as spheres.

In this chapter we consider the convolution quadrature method for the
Neumann problem of the wave equation as was recently studied in [ChO0S].
Here we summarize the application of this method and give numerical results
comparing it with a direct collocation-based Burton—Miller type method. The
numerical experiments are given for transient acoustic radiation from a range
of axisymmetric structures.

C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 103
Volume 2: Computational Methods, DOT 10.1007/978-0-8176-4897-8 9,
© Birkhauser Boston, a part of SpringeriScience + Business Media, LLC 2010
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9.2 Boundary Integral Formulation

Let 2 C R3 be a finite Lipschitz domain with boundary I' and let £2, =
R\ §2 denote the unbounded exterior domain, which we assume is filled with
a homogeneous acoustic medium with speed of sound c. In this chapter we
consider the numerical solution of the wave equation

2
%(m,t) = A Au(z,t), €24, te(0,7T) (9.1)

with initial conditions

u(x,0) = %(az,O) =0, x€Ny (9.2)

and the Neumann boundary condition

ou
vy

(x,t) = f(z,t), xel,te(0,T), (9.3)

where f denotes the given boundary data and v, is the outward unit normal
vector to I' at . The existence and uniqueness of solutions to this initial-
boundary value problem (IBVP) has been established for f belonging to a
suitable anisotropic Sobolev space [Bam86]. In order to define these spaces,
we first define the Sobolev space H%(D) in the usual way for o € [—k, k| with
k a positive integer (see, for example, [Mc00]). The value of k depends on
the global smoothness of the domain D C R3, with k = 1 for the Lipschitz
case considered here. Let us denote the norm on these spaces by | - || e (p)-
The anisotropic Sobolev space H"(R; H*(D)) of order r € R is given by
H (R HY(D) = {g: DX R = R fo(1+ )| Fg()fap) < 00, with
F denoting the Fourier transformation on R. This may be restricted to finite
time intervals of the form (0,7) by denoting

Hgy (0,7 H*(D)) = {9lpx 0,9 € H (R; H*(D))withg = 0 onD x (—00,0)},
(9.4)
with notation as in Lubich [Lu94]. Given boundary data

fe HyN o, T; H-Y2(I)),
there exists a unique solution to the IBVP

w e Hy(0,T; H'(24))

depending continuously on the data [Bam86, Ch08]. Note that for r € Z the
condition on the data implies that f and its first r time derivatives vanish at
t=0.
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¢ .
Dp(x,t) :/O /F;Ti(x—g,t—T)go(g,T)dfng, re 2y, te(0,T1), (9.5)

where G is the fundamental solution of the wave equation

Cla,t) = 47T1|x| 5 (t - %) , (9.6)

0 denotes the Dirac delta distribution, and ¢ is the unknown layer density.
The double-layer potential (9.5) satisfies the wave equation (9.1) and initial
conditions (9.2). Let ¢ > 0, z € I', and ©’ = = + ev, € 2. It is well known
that the operator

Wol(x,t) = v, - lirt% Vo Doz t) (9.7)
e—

is continuous across I" [Co04]. Combining this fact with (9.5) and the bound-
ary condition (9.3) yields the following boundary integral equation for the
layer density:

We(zx,t) = f(x,t), =z=e€l,te(0,T). (9.8)

In the definition of W given by (9.7) we may only take the derivative terms
inside the integrals in the double-layer potential D if the resulting integrals are
interpreted as a finite part in the sense of Hadamard. This is so because the
integrand would then contain an O(|z—¢£|~3) singularity. However, this may be
reduced to the weakly singular case O(|z — £|~!) when the Galerkin method
is employed for the spatial semi-discretization [Ch08]. Once the boundary
integral equation (9.8) has been solved for the layer density, the solution of
the IBVP follows from the representation formula (9.5).

9.3 Discretization Methods

9.3.1 Time Discretization: Convolution Quadrature

A direct space-time discretization of equation (9.8) involves the treatment
of the Dirac delta distribution. The resulting integration domains are given
by the intersection of a light cone of finite width with the spatial boundary
elements. Since these integration regions can be of quite general shape, nu-
merical quadrature can become very complicated. These methods also have
well-known stability problems. The convolution quadrature method for the
time discretization leads to an unconditionally stable scheme, and the inte-
gration regions are simply the spatial boundary elements. We do not detail the
theoretical framework here (see [Ch08, Lu88a, Lu88b, Lu94]), but summarize
the application of the method.

For the time discretization of (9.8) we split the time interval [0, 7] into N+
1 equal time steps of length At = T'/N and compute an approximate solution



106 D.J. Chappell

at the discrete time levels ¢, = nAt for n = 0,1,2,..., N. Following [ChO08,
Lu88a, Lu88b, Lu94], the convolution quadrature method is based on a linear
multistep method which, for differential equations &'(t) = g(P(t)), can be
formulated as

k k
Z Qj®Ppyj = At Z Big(Prti—t), (9.9)
j=0 j=0

where @, = &(t,,). Let

gt
() = —zizz ﬁj your (9.10)

be the quotient of generating polynomials of the linear multistep method (9.9).
The continuous convolution operator W is replaced by the discrete convo-
lution operator

(Warpar) (- nAt) = > w,_j(At, W), (9.11)
j=0

where ¢; = (-, jAL) and W denotes the Laplace transform of W. Here the
“quadrature weights” or convolution coefficients are linear operators

wn (AL, W) : HY2(I') — HY2(I)

defined by their z-transform

S (At T)CT = T ( %) L <t (9.12)

n=0
We employ the second order accurate, A-stable backward difference formula
(BDF2) method with

1
Q) = 5(CF —4C+3).

9.3.2 Space Discretization: Galerkin Boundary Element Method

In the previous section we derived the semi-discrete problem: For n =
1,2,..., N, find ¢, € H'/?(I') such that

zn:wn_j(At, W)p; = f(-,nAt). (9.13)

J=0

For the space discretization we let I' be discretized by a regular boundary
element mesh in the sense of Ciarlet [Ci87] with element diameter Az. Let
X, C HY? (I') denote a family of finite approximation spaces consisting of
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For the Galerkin boundary element method we replace ¢, in (9.13) by
some ¢" = pa(-,nAt) € X, of the form

Ng
o= b, (9.14)
i=1
where b;, i = 1,..., N, are the basis functions chosen for XA, and (qﬁ?)f&l =

¢™ € RN+ is the vector of coefficients to be determined. Applying the Galerkin
method, we impose the integral equation in a weak form, which yields the fully
discrete problem: For n = 1,2, ..., N, find ¢"™ € X, of the form (9.14) such
that

n  Ng
325007 [ ey (A () w0 o) T = [ S mthn(o)ar
§=0i=1 r r
(9.15)
forall k =1,...,N, and n = 0,...,N. Here s is the Laplace transform
frequency parameter. This can be written in the form of a recursion

n

ZAn—j¢j :fn’ n=0,...,N, (916)

Jj=0

where the entries of the matrices A™ are given by

(A")s = (At, [ e, s)bkmdrm) , (9.17)

and

(f")k = / f(x,nAt)by(z)dT,.
r
We may evaluate the integral
[ @)@
r

using the weakly singular formula given in [Bam86]. We find that this integral
is equivalent to

52 e—slz—¢l/e
/F/F {curlr bi(€) - curlp by (z) + =5 (vz - V&)bz‘(é)bk(w)} T E— dle dI,
(9.18)
where the tangential curl operator is defined by
curlp (z) = vy A V(). (9.19)

Here 1[1 is defined in a tubular neighborhood of I', constant along each line
normal to I" and equal to 1 at the intersection point. Hence, the hypersingular
operators W and W do not appear directly in our method, since we can use
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9.3.3 Error Analysis

We give a theorem from [Ch08, Lu94] giving the convergence rate of the space-
time discretization.

Theorem 1. For smooth compatible data f, the fully discrete method (9.15)
is unconditionally convergent of optimal order

o™ = e nADmary < Cr(Af + A3 (9.20)
uniformly on [0,T].

Therefore, choosing AzF+t3 o At2 means that the convergence rates in the
temporal and spatial discretizations match. The convolution coefficients are
evaluated approximately using the trapezoidal rule to approximate the Cauchy
integral given by the inverse z-transform

_ 1 1N —nm

as suggested in [Lu94], where p € (0, 1) is a parameter to be fixed. This com-
putation may be done very efficiently using fast Fourier transform techniques.
Applying the trapezoidal rule to (9.21) yields

_p L1
Wy (AL, A) = b, (AL, A) = ”L > A (%) e~ 2mnl/L (9.22)
=0

forn=0,..., N with ¢; = pe* /L The errors due to the trapezoidal approxi-
mation, numerical integration procedures, and for the approximate evaluation
of the exterior solution u have all been considered in [Ch08]. This work is based
on similar perturbation analysis to that in [Ha08], and the result is that the
optimal O(At?) convergence rate is attainable with sufficiently small At for a
suitably designed numerical scheme. Supporting computations are also given
to demonstrate the results in practice.

9.4 Numerical Experiments: Comparison with an
Alternative Method

We present results comparing the convolution quadrature approach with a di-
rect Burton—Miller type integral equation model as detailed in [ChHa06]. The
discretization of the Burton—Miller approach was done using a full space-time
collocation method with piecewise cubic polynomials in time and piecewise
constants in space. The discretization of the convolution quadrature method
is done using the BDF2 multistep method in time, as detailed earlier, and
piecewiseglineargpolynomialsyingspaces Clearly, these choices are not designed
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to compare equivalent orders of interpolation, but simply compare two ex-
isting models in terms of their accuracy and efficiency when computed using
MATLAB on a Pentium 4 PC. In both cases the spatial order of interpolation
is the simplest permitted, and the temporal order of interpolation is chosen
to give a good level of accuracy. For the convolution quadrature method this
is the highest order temporal approximation that is permitted by the theory.

The examples studied in this work are axisymmetric, as this simplifies the
calculations. Figure 9.1 shows the generating curves for the three surfaces con-
sidered. The generating curve for the peanut is defined by three unit circles
whose centers lie on an equilateral triangle. Starting from the point (0,2) at
the top of the curve and moving along it in a clockwise direction, the first 2 /5
of the arc length is formed by an arc from a circle centered at (0,1), the next
1/5 from a circle centered at (1/3,0), and the final 2/5 from a circle centered
at (0, —1). All meshes used to approximate I" are exact geometrical represen-
tations defined in terms of straight line segments and arcs of circles. Note that
the element diameter Az should be restricted to the generating curves, since
this is the only part of I" where boundary element approximation is employed
directly. The solution on the rest of I is calculated as a consequence of the
axisymmetry assumption.

Unit Sphere Cylinder Peanut
15 ‘ 715 ‘ 72 ‘
1.5¢
1 1
1t
0.5+ 1 0.5F
0.5¢
0 oF 0
-0.5 1-0.5 -05
—1t
-1 1 i
z -1.5¢
-1.5¢ . {15t ‘ R ‘ ‘
0 0.5 1 0 0.5 1 0 05 1

Fig. 9.1. Axisymmetric surface generating curves.

Consider the radiation of a spherically symmetric wave defined by

w(R,t) = w (% _ cos (W(R—3Cj+5ll)) + 2 cos (2#(R§§t+5a))

(9.23)

— L cos (W(R—Zt+5a))) o—((R—ct+2a)/(3a))*

Ol LE Zyl_i.lbl
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Here a is the radius of some sphere S C (2, R is the distance from the center
of S to some point x € 2, and H is the Heaviside step function. It may be
verified that (9.23) satisfies equations (9.1) and (9.2) from the initial-boundary
value problem. The required boundary data may be calculated from (9.23)
using the chain rule and simplifications due to the axisymmetric geometry to
give

ou  Ou Oou  Ou

or ~ OR" 9z OR
where r and z are the coordinate axes shown in Figure 9.1 and 0 is the angle
measured clockwise from the positive z-axis. Hence, the boundary data is

given by
ou ou ou ou .
= 5 —I/»,«E-I-Vza = ﬁ[VTSIHG-I-I/ZCOSG], (924)

where v,. and v, are the components of v in the r and z directions, respectively.
The numerical approximations for u are compared with the exact solution
at two different points z € 2. The error is calculated using

N 1/2
Err(z) = (Atz @A (2, nAt) —u(m,nAt)|2> , (9.25)

n=0

where u, is the approximation to u. Figure 9.2 shows a plot of the exact
solution u at the points z; = (0,0,3) and z2 = (2,0, 2).

Exact solution at X, Exact solution at X,

0.8

0.8

‘o 1‘0 20 ] 1‘0 20
t t

Fig. 9.2. u(R,t) at z1 and z2 for t € [0,16] and a = c = 1.

The first example to be considered is that of a unit sphere. Table 9.1 gives
the results for Err with 7' = 25.6,a =c= 1, p = AtYN, L = N, and N, = 10.
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Table 9.1. Results for radiation by the unit sphere.

Method At Err(z1) Rate Err(z2) Rate Time (s)
CQM 0.4 0.668 - 0.645 - 41
B&M 0.4 0.0686 - 0.0611 - 6000
CQM 0.2 0.235 1.51 0.219 1.56 86
B&M 0.2 0.0113 2.60 0.0112 2.45 11000
CQM 0.1 0.0618 1.93 0.0571 1.94 180
B&M 0.1 0.00401 1.49 0.00512 1.13 22000 (*)

(*) 20700 s computing the integral operator containing the data—this may be re-
duced if the data is zero for ¢t > to say.

The results for the other structures are given in Table 9.2. In both cases
c=1,L=N,and p = At/N. For the cylinder, T' = 25.6, N, = 20, a = 1,
and At = 0.1. For the peanut-shaped object, T' = 128/7, a = V3-1, N, =30,
and At =1/14.

Table 9.2. Results for radiation by the cylinder and peanut.

Geometry Method Err(z1) Err(z2) Time (s)
Cylinder CQM 0.0563 0.0564 1700
Cylinder B&M 0.0247 0.0146 58000
Peanut CQM 0.0376 0.0664 5400
Peanut B&M 0.0138 0.00823 109000

Considering both methods with the same time step and number of bound-
ary elements, we see that the convolution quadrature method (CQM) is faster
with known convergence rates, whereas the Burton-Miller method (B&M) is
more accurate for the examples considered here. The difference in accuracy is
less pronounced in the non-spherical cases. The Burton—Miller method could
perform faster in the case of time-limited data, although there is currently no
available error analysis.
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10.1 Introduction

Kirchhoft’s classical theory of bending of elastic plates is widely used in me-
chanical engineering for the mathematical modeling of structures consisting of
thin elements. Since most of the solutions in such problems are found compu-
tationally, it is very useful to have a tool that provides tight a priori estimates
for the error. In this chapter, we construct an algorithm that generates such
estimates by means of what is called a dual functional. The argument is con-
structed variationally and is illustrated by means of a numerical example.

Similar methods for the plate model with transverse shear deformation
have been developed in [ChCoKo00] and [ChEtAl06]. A full mathematical
study of the static and dynamic bending within the framework of this model
can be found in [ChCo00] and [ChCo05], respectively.

10.2 Formulation of the Problem

Consider a thin plate occupying a region Sx [—h/2, h/2], where S is a bounded
domain in R? with a simple, closed, smooth boundary S and 0 < h < diam S.
In Kirchhoff’s model, the displacement field is of the form

where ©' = (z,3), * = (71, z2), and the superscript 7" indicates transposition.
We examine the boundary value problem (Dy) [TiWo87], which consists
in finding u € C*(S) N C1(S) such that

DA*u(z) — hdiv(T(z)Vu(x)) + su(z) = q(z), =€ S, 101
u(z) = d,u(x) =0, =z € dS. (10.1)
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In the first equation (10.1), the second term on the left-hand side accounts

for a middle-plane pre-existing stress system in equilibrium, the third one

represents the response of an elastic foundation, D, h, and s are material

constants, ¢ is the load, A is the Laplacian, and V is the gradient operator.

The second line in (10.1) describes clamped-edge boundary conditions, with

0, denoting the derivative in the direction of the outward normal to 95S.
Equation (10.1) can be written in the simpler form

A?u(x) — div(T(z)Vu(z)) + seu(z) = ¢(z), (10.2)

where T incorporates the factor A/D and s and ¢ incorporate 1/D. Tt is
equation (10.2) that we are referring to in the subsequent analysis.

10.3 Function Spaces

We denote the inner product and norm in L?(S) by (-, )o.s and ||-[/o.s, and by
(+,-)o and || - ||o if S = R2. The following spaces of distributions are essential
in our considerations.

H,,(R?), m € R: the standard Sobolev space, with norm

3 = [+ lgmiae)P g
R2
H_,,(R?): the dual of H,,(R?) with respect to the duality generated by the
inner product in L?(R?);
H,n(S): the subspace of H,,(R2) of all u with suppu C S;
H,,(5): the space of the restrictions to S of all u € H,,(R?), with norm

g = inf ;
s =, inf ol

H_,,(S): the dual of H,,(S) with respect to the duality generated by the inner
product (-,)o.s;
H,,(0S): the standard space of distributions on 95, with norm || - ||[,n.05;
H_,,(05): the dual of H,,(95) with respect to the duality generated by the
inner product (-,-)o.ps in L?(95).

Let v be the trace operator that maps H3(S5) continuously to Hsg,o(9S) x
Hy/5(0S) according to the formula

(vu)(x) = {u(z), du(z)}, x € as.

The bilinear form of the energy density is

a(u,v) = [ {(Au)(Av) + (TVu, Vv) + suv} dz.
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_ We consider the variational version of (Dg), which consists in finding u €
Hy(S) such that )
a(u,v) = (g, v)o,s Yv € Hy(S).

If the elements t,g of the (2 x 2)-matrix T satisfy tog = tga € L™(S5),
then the following assertions hold.

Theorem 1. The bilinear form a(u,v) is
(i) symmetric:
a(u,v) = a(v,u) Yu,v € fIg(S);
(i) continuous on Hy(S):
jau,0)| < Mllull2][o]ls Vu,v € Ha(S);
(iii) coercive on Hy(S):
a(u,u) > 6llull2  Yu e Hy(S).

Theorem 2. For any q € H_»(S), problem (Do) has a unique solution u €
Hy(S), which satisfies
lullz < cllgll-2:s-

The classical nonhomogeneous problem (D) consists in finding u € c4(9)N
C1(S) such that

APu(x) — div(T(z)Vu(z)) + seu(z) = g(z), =z €S,
u(z) = fi(z), Ou(zr) = fa(x), =z €dS.
In the corresponding variational problem (D), we seek u € Ho(S) such that
G(U,U) = (qa U)O;S Y € ﬁ2(S)7
yu = f.

Theorem 3. For any q € H_»(S) and f € Hs/5(0S) x Hy5(9S), problem
(D) has a unique solution u € Hy(S), which satisfies

[ullzis < e(llgll-2:5 + [ f1lls/2:05 + [ fall1/2:09)-

We now consider a general abstract variational problem (Dg) in which, for
a bilinear form a(u, v) and a linear functional L(v) on a real separable Hilbert
space H, we want to find u € H such that

a(u,v) = L(v) Yv e H.

Theorem 4. If a(u,v) is continuous and coercive on H, the abstract prob-
lem (Dg) has a unique solution uy € H, which minimizes the energy functional

O(u) = L a(u,u) — L(u).
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Corollary 1. For approzimate solutions {u,}22 constructed by means of
the Galerkin method,

= woll* < 2¢3 [ (un) = J°(uo)],
a(u — ug,u —ug) < 2[J%(un) — JO(ug)).

The difficulty in this procedure is that J°(ug) is not known. To eliminate
it, we design a dual functional for J°(u) whose maximum (dual extremal
problem) coincides with J°(ug), and then construct a sequence

{1320, T < J%wo),  Jn — J°(u).

10.4 The Dual Functional for T =0 and » > 0

In problem (Dg), we seck ug € Hy(S) such that
a(uo,v) = (q’ U)O;S Vv € ﬁ2(5)7
where
a(u,v) = /{(Au)(Av) + suv} dz.
S

The solution ug minimizes the energy functional

JO(u) = % /{(Au)2 + su? — 2qu} de.
S

On the set
U={veL*9): Av—qe L*S)},

we define the dual functional

Iy(v) = —% /{'u2 + 37 g — Av)*} dx.
S

Theorem 5. If vy = Aug, then

inf J%(u) = J°(ug) = Io(vo) = sup Io(v).
uEHz(S) veU

In problem (D) with f = {f1, fo} € H3/2(9S) x Hy/2(9S), on U we define
the dual functional
1
Tolw) = /{v2 + 5L g — A0} dz + (7, Flosos,
s
vel, m,v={-0,v,v}

Theorem 6. If ug € Hy(S) is a solution of (D) with ¢ € L*(S) and vy =
Aug, then

inf J%(u) = J%(uo) = Jo(vo) = suB Jo(v).
< vE
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10.5 The Dual Functional for 3 > 0 and T Positive
Definite

The solution ug € Hy(S) of (Do) minimizes on Hy(S) the energy functional

JO(u) = % /{(Au)2 + (TVu, Vu) + 3u? — 2qu} du.
5

Here, on the set

U={(Ap), p=(u,p2)", e L*(9),
p € [LA(S))?, q— A\ +divu € L*(S)}

we define the dual functional

1
(i) =5 [+ @ o)+~ A+ divp)
S

Theorem 7. If \g = Aug and pg = TVug, then

inf  J%(u) = J%uo) = Io(Xo, o) = sup Io(A, p).
u€Hs(S) (A p)eu

In problem (D), on U we define the dual functional

Jo(A, ) = —% /{Az + (T, )
° + 27 g = AN+ div ) da+ (A, 1}, Fosos,
O AN, 1} = (=0 A + 1, A), o = pav1 + pave.
Theorem 8. If ug € Hy(S) is the solution of (D) with
q € L*(S), Xo=Aug, po=TVug,
then

inf J%(u) = J%uo) = Jo(ho, o) = sup  Jo(\, ).
u€Us {A\pyeu

10.6 The Dual Functional in the Absence of an Elastic
Foundation (s = 0)

We assume that T is uniformly positive definite in S. In problem (D), on the
set

ol Lal ZJI_ELI

2(5). e [LA(S)2, AN~ divi=q)
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we define the dual functional

IoO ) = —3 / 4 (T o )} d
S

The exact solution ug minimizes on Hy(S) the energy functional

JO(u) = %/{(Au)2 + (T'Vu, Vu) — 2qu} dz.
S

Theorem 9. If A\ = Aug and pg = TVug, then

inf  JO(u) = J%uo) = Io(Ao, po) = sup  Io(A, p).
u€Hz(S) (Mp)eu

In problem (D) with yu = f € Hs/5(S) x Hy/2(S), on U subjected to the
new restrictions

AN —divy = Q,
Q=q— A’F +div(T'VF),

where F'is an extension of f to S, we define the dual functional

Jo i) = =5 [OF + (@ ) da + 6,00 1) Poas.
S

Theorem 10. Ifug € Ho(S) is the solution of (D) and
qc L2(5>7 )\0 = AUO, Ho = TVUO,
then
inf JO(u) = J%uo) = Jo(Mos po) = sup  Jo(A, p).

uEUy {\uteu

Suppose now that 1" = 0. Then the solution ug of problem (Dg) minimizes
on Hs(S) the energy functional

JO(u) = %/{(Au)2 —2qu} dx.
S

On the set
U={veL*): Av =g},

we define the dual functional
/ v? dzx.
s

Io(v) = —

| =
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Theorem 11. Ifug € H5(S) is the solution of (Do) and vy = Aug, then

inf J%(u) = J%(ug) = Jo(vo) = sup Jo(v).
wEH(S) veu

Problem (D) is treated as above.

Remark 1. When s = 0, the set U is defined with differential restrictions. This
inconvenience is removed by developing nonclassical dual methods, as in the
case of the transverse shear deformation model.

10.7 Numerical Example

Working in kilograms and centimeters, we consider a square steel floor with
S =[-100,100] x [-100,100], h=0.5, D = 44048,
an elastic foundation characterized by
2 =10"9,
and a pre-existing stress given by

T 8 <2w1 + x5 4+ 1000 T — 2x9 )

T Ty — 229 321 — x5 4+ 1000

Both the direct and dual problems are solved by means of the Galerkin
method. In the former, we consider the subspaces spanned by

i+j=n
{‘Pi,j (.’1717 1,'2) }i+j=0 s
Pyor,3) = ol (101 - 2)(104 - a3).
In the latter, we work with the subspaces spanned by

i+j=n
{(APi,j7 0, 0)7 (07 81‘P71,j70)7 (0707 82Pi,j)}i+j-=0'

In the computation, performed with Mathematica, the operative error esti-
mate is
[ty — uglla < e[ J%(upn) — In(vy)]Y? = 0 as n — oco.

A test problem is used to estimate the value
c = 100.
The results for a uniform load

qlr) = —-2x1078

are shown in Table 10.1.

graphed in Figure 10.1.
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Table 10.1. Results for a uniform load g(x) = —2 x 105,

n Jo(un) Io(vp) c[JO(un) — Io(vn)]l/2

2 —2.291844 x 107% —2.681685 x 107¢  6.24373 x 1072
8 —2.297886 x 1076 —2.420752 x 107%  3.50523 x 1072
14 —2.297889 x 1075 —2.375689 x 107%  2.78927 x 1072
20 —2.297890 x 107% —2.327588 x 1076  1.72333 x 102
26 —2.297890 x 107% —2.307677 x 107 9.89276 x 1073
30 —2.297890 x 1078 —2.302678 x 10  6.91943 x 103

100

Fig. 10.1. Approximate solution usp.
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11.1 Introduction

The main goal of this chapter is to obtain new iterative formulas in order to
solve systems of nonlinear equations. They are proved to be modifications on
classical Newton’s method which accelerate the convergence of the iterative
process.

In previous works, the authors have obtained variants on Newton’s method
based on quadrature formulas whose truncation error was up to O(h®)
(see [CoTo06] and [CoTo07]). Nevertheless, the approach used in this paper
to solve a nonlinear system is different: by using Adomian polynomials, we
obtain a family of multipoint iterative formulas, which include Newton and
Traub (see [Tr82]) methods in the simplest cases.

The decomposition method using Adomian polynomials is used to solve
different problems in applied mathematics in [Ad88]. Indeed, Babolian et al.
(see [BaBiVa04]) apply this general method to a concrete nonlinear system.
Nevertheless, with a different system, it is necessary to reconstruct the entire
process.

We deduce in Section 11.2, by means of Adomian decomposition, a family
of iterative formulas that can be applied to solve any nonlinear system with-
out knowledge about Adomian polynomials. These iterative formulas involve
classical methods, like those of Newton (order p = 2) and Traub (order p = 3),
and also new methods whose convergence order is proved to be higher.

In Section 11.3, we study the convergence of the different methods by using
the following result.

Theorem 1. (see [Tr82]) Let G(x) be a fized point function with continuous
partial derivatives of order p with respect to all components of ©. The iterative
method x*+1) = G(z™™) is of order p if

G() =T,
0% g;(T)
8$j1 8$j2 ©0o0 8.Z‘jk

=0, forall 1<k<p-—1, 1<4,j1,...,5k <N

C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 121
Volume 2: Computational Methods, DOT 10.1007/978-0-8176-4897-8 11,
© Birkhauser Boston, a part of SpringeriScience + Business Media, LLC 2010



122 A. Cordero and J.R. Torregrosa

oPg;(T
oz, 8%9:(36) o1, #0, for at least one value of i, 71,..., jp,

where g; are the component functions of G.

Finally, numerical tests are made in Section 11.4 comparing the classical
and new methods and confirming the theoretical results.

11.2 Description of the Methods

Let F: D CR" — R", n > 1, be a sufficiently differentiable function whose
coordinate functions are f; : R® — R, ¢ =1,2,...,n. Let T be a zero of the
nonlinear system F'(z) = 0 and a € R™ an estimation of T. Then, this system
is equivalent to

F(a)+ Jp(a)(x —a) + K(z) =0,

where Jp(a) is the Jacobian matrix of the function F' evaluated in the esti-
mation o and K : R™ — R" verifies

K(z)=F(z) — F(a) — Jp(a)(z — ).

Then, z = a — J;' (a)F(a) — J*(a) K (x). Let us denote the linear compo-
nent as ¢ = a — J5'(a)F(a) € R", and by P(x) the nonlinear one, P(x) =
—Jpt(a)K (z), P : R® — R™ with coordinate functions P; : R® — R. So,
xz =c+ P(x).

Let us suppose that each one of the respective ith components of the

approximation x of the solution Z and also of P(z) can be written as z; =
&)

>z and Pi(z) = i% Al i=1,2,...,n, where A} : R" — R are Adomian
i):oolynomials. Subseé;l?ently, a first estimation of T is 20 = (2}, 23, ..., 27)7,
where ) = ¢; = a; — i H;j(o) fj(«), Hij(x) being the (i, j)-entry of the
inverse of the Jacobian ;n:;trix. So,

' =a— J (a)F(a) (11.1)

and z ~ x°, which corresponds to the classical Newton’s method (CN).
If a better approximation is needed, a new term in the series development

of x is used, z; >~ x{, + z}, where 2} = A = Pi(x) = — > Hi;j(a)k;(x}) and
j=1
k;(z) is the jth coordinate function of K (x). Then,

ot = —J (@)K (2°) (11.2)

z~2+z' =a—J'(a) (Fa) + F(zY).
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This method, whose convergence order is 3, was described by Traub in [Tr82].
The term x4 in the series development of xz; is obtained as

rh = Al = % (Pi (ik%},...,ik%?))
0 =0 A=0
— —ZH”(a % (fj (ZAQ@H...,ZA%?))
1=0

A=0

oo} o
Let us denote <Z Nzt .03 )\lwl"> by (A, x), whose mth component
=0 1=0

is denoted by i, (A, ), and note that ,u,(O z) = (z,...,28)T = 2°. Moreover,

taking into account that M Z INZLam,

7512 = _ZHz‘j(a) (Z a](;J >+ZHU( <Z 3(::)$T>

m=1 1
B b 9 WG
j=1m=1
by using .,
> Hij(x)Jjn (x) = Gim, (11.3)
j=1

where §;,, is the Kronecker symbol. Then, in vectorial notation:
2 =zt — T (@) Jp (202t (11.4)
and, using (11.1), (11.2), and (11.4), a new estimation of the solution Z is
v a—JpH (@) F(a) = 205 () = Jp' (@) Jp(2°) T (o) F(2?).

This expression corresponds to a new method which involves only a new
function evaluation with respect to the previously described methods and
whose convergence order will be proved to be 4. We call this new method
NAd1, as it is a variant of Newton’s method that use Adomian polynomials
of sub-index 1. Nevertheless, an iterative expression of NAd1 can be used
with no knowledge of Adomian polynomials, only in terms of previous esti-
mations and Newton’s approximation. So, z(?) being the initial estimation of
the iterative process and Z*+1D = z(*) — -1 (zM)) F(2(®) being the (k+1)th
approx1mat10n of Newton S method a new estlmatlon 2 +1) can be obtained
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1) = gk+1) _ [2J;1(x<k>) ~ M(’“)} F(z®+D), (11.5)
where M*) = ng(x(k))Jp(i(kJrl))J;l(x(k)). Indeed, other new methods can

be obtained if more terms are added in the truncation of the theoretical se-
ries developments of each ith component of the estimation x. In particular,

calculating the components of 23 = (zi,...,23)T by means of the respective
Adomian polynomial A%, i=1,2,...,n,
; ;1
Ty = Az—iw(ﬂ( 1A ) \—o

_ Pfi(px))  pm (A ) Jpa(A, x)
= ZHZJ(C’ Z {Z Bpim( N D) Opa (V) ON oA }A_
[ 0fi(1) pn(A\ )
_E;Hij(a)mzzl{aum(k,x) B3N })‘_0
+ Z_ H;j(o) {agjm(:) 9 ,ug/\(;\,x) })\zo .

o0
As LpmQua) _ l;(l — 1)IA =2z and using (11.3), each component z} is

X2
defined by

i I\ v Pfi(a°) oa

T3 = _5 Z Z H’L]( )8 ]8 11
j=1m=1a=1 mea
- L) N

— D Hij( )Z 8Jx 2 + Oim Ty

j=1 m=1 m=1

3

Then, in vector notation, x° can be expressed as

1
23 = 2% — —J;l(a)B — I @) Jp(2)z?,

2
where B is a vector whose jth component is B; = Z E gmﬁ g”ma) g,

m=1a=1
A new approximation of the solution is obtained,  ~ z° + x' + 2% + 23.

This is a new method which involves the functional evaluation of vector B
including second-order partial derivatives of f;,j = 1,...,n, whose conver-
gence order is 5. We call this new method NAd2, as it uses Adomian poly-
nomials of sub-index 2. So, z(®) being the initial estimation and z*+D =
) — J- ()Y F(2(®) being the (k+1)th approximation of Newton’s method,
a new estimation z(**1) can be obtained by means of

2D — (k1) _ 3JF_1(m(k))F(E(k+1)) + 3M® p(zkt)
1
_ M(k)JF(E(lﬂ—l))JF—l(x(k))F(z(k‘H)) _ §ng(x(k))3(k)7 (11.6)
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NN g2 (m(k+1)
where the jth component of B®*) is Bj(.k) =Y ¥ %w?x‘f.

m=1a=

11.3 Convergence Analysis

Let T be a zero of the nonlinear system F(x) = 0. It can be easily proved that

OH,i(x) Dfi(x sz 0% fi(x)
Z 8]:vl ZH]Z( 97,0z, (11.7)

ox
1 T

asz(I () o = 8]‘;(13 aH]z 8fz($)
Z Oxs0x; Oz, N Z Oox; Oxg0x, Z Oxy Ox,0x;

n

Z 8 fz(w) (11.8)

p 8503(95177«333;
and
O°Hyi(z) 9filx) _ _Za Hji(x) & fiw) N~ O Hyi(w) & fi=)
— Bacuamsaxl oz 4 0xs0x; OxuOTr — 0z, 0x; O0xs0T,
_Z 9*Hji(z) 0*fi(z) <~ 0Hji(x) 0 filx)
Bzuaws 0x10x — 0x;  02,0xs0T,
~OHji(z) filw) N 0Hu(z) 9°filx)
— 0xs 0x,0x,0x) — 0xy Oxs0x,0x)
- ' fi(x)
=L g 5 e (119

The following result, partially proved in [Tr82], will be useful in the proof
of the main theorem.

Lemma 1. Let A(x) be the iteration function of the classical Newton’s method,
whose coordinates are \j(x) = x; — Y Hji(x)fi(x), for j =1,...,n. Then,

OA;(7)

= 11.1
25 o, (11.10)
PN(T) 9° fi(T)
= H(z 11.11
0x,0x; ; 5#(®) Ox,0x; ( )
9°),(3) [ 2Hi(@) 91i(@) | OH,u(@) O*fi(@) | OHyi(@) 0 1i(@)
8m58mT6xl — ox, 6:}086:101 Oxs amraxl ox; Oxs0x,
n 3 o =
12N @) 2L @ (11.12)
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and

o'\ (z) B Zc’) Hj;(z) 9*f:(z ZWHﬂ ) 02 f;(7)
0x,0xs00,0x;, amsaacl 8%8:10“ 0x,.0x; O0xs,0xL,

232}1]@ )02 fi(T 232H]Z ) 02 fi(T)
0x, 0T 8x18xu 0z, 0x, Ox,0x

+Z 0°H;i(7) fi(x) | <~ 0°H;i(T) 0°fi(T)
Ox,0x; Ors0x, p 0x,0x, Ox;0x,

OH, 23 f;(7)
9 jl %
+ Z 8xr axuawsaxl

0H;;(z) 0*fi(T)
+2Z O, 89:“(9337,8351

OH;;(T) 0%f;(T)
9 ]’L %
+ Z 8:1:; Bwuaw 0T,

0H;;(T) 0°fi(T)
2 Jz i
+ Z 89% 8;psaxraxl
. 0@
+3;Hjl(x)mv (11.13)
for j,lr,s,u e {1,2,...,n}.

Let us note that, by applying Theorem 1 and using expressions (11.10)
and (11.11) in Lemma 1, it can be concluded that the convergence order of
Newton’s method is p = 2.

Lemma 2. Let A(x) be the iteration function of the classical Newton’s method.
Moreover, let us denote by N;j(x) the (i,j)-entry of the matrix N(x) =
TrA@) It (2), Nij(2) = 30y Jig(\(@)) Hyj(x). Then,

N,y (@) = 635, (11.14)

3 i
ZH(U axi(,gg (11.15)

8:0;

and

0?N,;(T) 82f1 )8 fi(@)
81:;(%:1:7 ZZH(U

02,01, 70Ty 5‘:6;(9:57

g=1p=1

OHy;(T) ) 02 P*fi(T) “ _ 9@
-S> " H, (7)) —2 (111
Z ox, 8xq8xl ; qj (l’) 8asq5‘xlc’9xr ) ( 6)
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Theorem 2. Let F' : D C R™ — R" be sufficiently differentiable at each
point of an open neighborhood D of T € R™ that is a solution of the system
F(x) = 0. Let us suppose that Jp(x) is continuous and nonsingular in T. Then,
the sequence {x®}50(x®) € D) obtained by using the iterative expressions
of methods NAd1 (11.5) and NAd2 (11.6) converges to T with convergence
order 4 and 5, respectively.

Proof. Let us consider a solution T € R™ of the nonlinear system F(z) = 0
as a fixed point of the iteration function G : R™ — R" associated witht the
method described in (11.5). Let us denote by ¢; : R — R, i = 1,2,...,n
the coordinate functions of G.

We denote by M;;(z) the (i,5)-entry of M(z) = Jz'(z)Jp(A(z))J 5" (z).
Thus, the ith component of the iteration function corresponding to method
NAd1 is

gi(w) = Ni(z) — QZHij(x)fj()‘(x)) + ZMij(x)fj(A(w))- (11.17)

Since H;j(x) and J;;(x) are the elements of inverse matrices, (11.17) can be
rewritten as

D Jig(@) (g5(x) = Aj(@)) + 2f:(A ZNUfJ 0.  (11.18)

j=1

Now, by direct differentiation of (11.18), with ¢ and [ arbitrary and fixed,
" aJ, 9g;(x)  O\j(z)
; + Z Ji]( ( 8171

S (z)

q=1

When 2 = Z, by applying Lemma 1, expression (11.10), and taking into
account that ¢(T) =7, A(T) =7, and f,(T) = 0, we have

(z dg;(T)
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Now, by direct differentiation of (11.19), with r arbitrary and fixed,

— 82Ji;(z) 8Jij(x) (Bgi(x)  9N(x)
0z, 01y (95(x) — m))—i—z oxy ( o0x, N oz )

=
0Jij(x) [ Og; :z:) 8)\ ac) 9%g;i(x) 6‘2)\j(x)
+Z oxy ( oxy ZJ” Ox-0x; 0x-0x]
~— Pfilz)  (2) 3/\q($)
2 z; Z; D (@)0Ng (@) Dz O
q=1 p=

af,x (r) <= &Nyla)
+2 Z (x) axTBxl B — axréwz Fi(A@))
iz

aNZJ(.’E ij 6)\ (.’IZ BNZJ 8fJ
B Z:: o (Z X (m) e ) B O (Z X (ac 8:171 )
fi(x)  INp(x) INg(2)
- ZN” (@) (ZZ Oy (2)00g(z) Bzr Oz )
a ZNZ]( ) (Z gf\cj q() 6acr8xz)> =0 (11.20)

Let us substitute « = T and apply (11.10), (11.11) from Lemma 1,
and (11.14), (11.15) from Lemma 2. Then,

- ) 2 f:(@)
ZJ” 3$ 8-’17[ ZZJz](m ]z( O 8:61

j=1 j=14=1

n 6 A _ 82 ’L_
72513 ZZJMI qz f(x +2Z‘Ilq( qz( )axj:a(g =

i=1 g=1

Therefore, as Jp(Z) is nonsingular, and 4, [, and r are arbitrary,

Pg;(T)

dr,.0r;

We now analyze the fourth order of convergence. To do this, it is necessary
to differentiate (11.20) with respect to xs, with s arbitrary and fixed, and
evaluate the resulting expression in & = Z. Then, by using (11.3), (11.7),
and (11.10), (11.11), and (11.12) from Lemma 1, (11.14) and (11.15) from
Lemma 2, and simplifying, it is proved that

g;(T)
0x 01, 0x;
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Again, with u arbitrary and fixed and using results from (11.7)—(11.9),
Lemma 1 (expressions (11.10) through (11.13)) and Lemma 2 (expressions
(11.14)-(11.16)), it can be proved that

d'g; (@)
Jij(T) ——L"4— 4+ P(T) = 0,
(?) 0,020z, 01 + P()
where P(Z) is a linear combination of partial derivatives of f; of second order,
evaluated in 7.
So, by Theorem 1 we conclude that the method NAd1 of iterative expres-
sion (11.5) converges to T with convergence order 4. The fifth-order conver-

gence of method NAd2 can be proved in an analogous way.

11.4 Numerical Examples

In this section we give numerical examples and compare the effectiveness of
the obtained iterative methods. In particular, the new methods NAd1l and
NAd2 are analyzed, and also Traub’s method (TM) and the classical Newton’s
method (CN), in order to estimate the zeros of several nonlinear functions.

(a) F(z1,22) = (exp(af) —exp(V221), 21 —22), T = (V2,v2)", T2 = (0,0)"
(b) F(z1,72) = (71 + exp(z2) — cos(z2), 371 — 2 — sin(zz2)), T = (0,0)T.
c) F(x1,22) = (2% — 221 — 22 + 0.5, 2% 4+ 422 — 4), T = (1.9007,0.3112)"".
1 1 2
(d) F(x1,2) = (23 +a3 — Lo} —234+0.5), 71 = (5, 9)", T2 = (3. —P)".
(e) F(x1,x2) = (sin(z1) + 22 cos(z1),x1 — x2), T = (0,0)7.
Table 11.1. Numerical results for nonlinear systems.
F(x) z©® Iterations D Sol.
CN Tr NAdl NAd2 CN Tr NAdl1 NAd2
(a) (23,237 10 8 7 6 2.0 3.0 3.9 3.8 m
(18,187 7 5 5 4 20 30 36 42 T
(08,08)" 5 4 3 3 30 43 46 6.7 T2
b 1527 7 6 5 4 20 30 36 46 T
(03,057 5 4 4 3 20 30 3.7 46 T
() 3,27 7 5 5 4 20 26 25 31 T
(1.6,00" 5 4 4 4 2.1 38 5.0 53 T
(d) (0.7,1.27 5 4 3 3 20 25 3.7 47 T
(-1,-2)7 6 4 4 4 2.0 29 3.0 3.7 o
(e) (1.2,-1.57 6 4 4 3 29 37 55 75 T
(-0.6,06)T 5 3 3 3 30 43 64 66 T

ol Lal Zyl_i.lbl
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The stopping criterion used is H:c("“rl) — () H + HF (z(9) H < 107 '2. For
every method, Table 11.1 shows the number of iterations needed for conver-
gence to the solution and the order of convergence estimated by means of the
computational order of convergence p (see [WeFe00]).
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12.1 Introduction

Optimization problems arise in science, engineering, economy, etc. and we
need to find the best solutions for each reality. The methods used to solve
these problems depend on several factors, including the amount and type of
accessible information, the available algorithms for solving them, and, obvi-
ously, the intrinsic characteristics of the problem.

There are many kinds of optimization problems and, consequently, many
kinds of methods to solve them.

When the involved functions are nonlinear and their derivatives are not
known or are very difficult to calculate, these methods are more rare. These
kinds of functions are frequently called black box functions.

To solve such problems without constraints (unconstrained optimization),
we can use direct search methods. These methods do not require any deriva-
tives or approximations of them. But when the problem has constraints (non-
linear programming problems) and, additionally, the constraint functions are
black box functions, it is much more difficult to find the most appropriate
method. Penalty methods can then be used. They transform the original
problem into a sequence of other problems, derived from the initial, all with-
out constraints. Then this sequence of problems (without constraints) can be
solved using the methods available for unconstrained optimization.

In this chapter, we present a classification of some of the existing penalty
methods and describe some of their assumptions and limitations. These meth-
ods allow the solving of optimization problems with continuous, discrete, and
mixing constraints, without requiring continuity, differentiability, or convexity.

Thus, penalty methods can be used as the first step in the resolution
of constrained problems, by means of methods that typically are used by
unconstrained problems.

We also discuss a new class of penalty methods for nonlinear optimization,
which adjust the penalty parameter dynamically.

C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 131
Volume 2: Computational Methods, DOT 10.1007/978-0-8176-4897-8 12,
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12.2 Formulation of the Problem

In the last years considerable investigation has been devoted to penalty
methods (in 2006, Byrd [ByNoWa06], in 2005 Chen [ChGo05], in 2003
Gould [GoOrTo03], in 2006 Leyffer [LeLoNo06], in 2002 Klatte [KIKu02], in
1995 Mongeau [MoSa95], and in 2005 Zaslavski [Za05]), because of their ca-
pacity to solve degenerate problems with nonlinear constraints.

Penalty methods belong to a general approach that can solve continuous,
discrete, and mixed constrained optimization problems, with no continuity,
differentiability, and convexity requirements.

They were used to solve mathematical programs with complementarity
constraints (MPCCs) by Benson [BeSeSh03] and by Leyffer [LeLoNo06] and
were used by Byrd [ByNoWa06] and Chen [ChGo05] in constrained nonlinear
programming to ensure sub-problems admissibility and increase the robust-
ness of each iteration. Thus, penalty methods are the primary methods for
solving constrained problems.

Consider the following general nonlinear programming problem (NLP),
denoted by P:

mi?ie%gize f(z) subject to e;(x) >0, i=1,2,...,s,
di(x)=0, j=1,2,....¢
ap <z, k=1,2,....n,
x; < by, 1=1,2,...,n, (12.1)

where f : R™ — R is the objective function, e; : R — R, with : = 1,2, ..., s,
are the s inequality constraints, d; : R® — R, with j = 1,2,...,¢, are the ¢
equality constraints, and the two last conditions are the constraints of simple
limits.

12.3 Penalty Methods

In a penalty method, the feasible region of P, R, defined by

ei(x) >0, i=1,2,...,s,

d](l‘) j:1,2,...,t,
ar < g, k:1,2,...,n,
xlgblv l:1727"'ana

is expanded from R to R", but a larger cost or penalty is added to the objective
function for points that lie outside of the original feasible region, R.

Penalty methods construct a new objective function, @, that contains in-
formation about the initial objective function, f, and the problem constraints.
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A sequence of unconstrained problems is constructed, dependent on the pos-
itive parameter r, with solutions z*(r) that converge to the solution of the
initial problem x*.

The new objective function @ is

D(x,r) = f(z)+O(z,71),

where © : R"*! — R” is a function that depends on the positive parameter
r, called the penalty parameter and O(x,r) = rp(x), where p is the penalty
function.

Definition 1 ([FrRo04]). The function p : R™ — R is the penalty function
for P if

o p(r) =0ifci(x) <0;
o p(x) >0 if ¢;(x) > 0.

Then we must solve a sequence of unconstrained problems P,, that replace
problem P with the new objective function

P, : minimize f(z)+ rmp(x),
RISIING

where 7, is a sequence of constants such that r,, — +o0.

12.4 Classification of Some Penalty Methods

The goal of a penalty method is to find suitable penalty parameters in such
a way that z*(r) minimizes P,,, corresponds to either a constrained global
minimum (CGM) that is feasible and has the best objective value in the
entire search space, or a constrained local minimum (CLM) that is feasible
and has the best objective value in a pre-defined neighborhood.

Therefore, penalty methods can be classified as follows:

o Global optimal penalty methods (GOPM) if they look for CGM solutions
of P;

e Local optimal penalty methods (LOPM) if they look for CLM solutions of
P.

Penalty methods can also be classified in a different way [Be99):

e [Inexact penalty methods, in which the minimization of a penalty function,
@, does not lead to exact CGM and CLM points, but instead successive
minimizations of an inexact penalty function with increasing penalty val-
ues lead to points infinitely close to a CGM or CLM solution (converge to
a CGM or CLM solution);

e FExact penalty methods, if they can find an exact CGM or CLM under finite
penalty values.
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Table 12.1. Classification of some penalty methods.

Static Penalty
Exact Penalty

Dynamic Penalty
Global Optimization

Refuse Penalty
Inexact Penalty

Discrete Penalty

Lagrangian
Local Optimization | Exact Penalty

Penalty [1

Table 12.1 summarizes the classification of existing penalty methods.

In inexact penalty methods, a sequence of sub-problems with a divergent
series of penalty parameters must be solved. For exact penalty methods, one
choice of penalty parameters may be adequate for the entire minimization pro-
cedure. Consequently, exact penalty methods are less parameter dependent,
which is their most appealing feature.

Definition 2 ([Za05]). A penalty function is said to have the exact penalty
property if there exists a penalty coefficient for which a solution of an un-
constrained penalized problem is a solution of the corresponding constrained
problem.

12.4.1 Global Optimal Penalty Methods

Global optimal penalty methods (GOPM) can be exact or inexact methods.
In this class are the static penalty methods and the dynamic penalty methods.

Static Penalty Methods

Static penalty methods were proposed by Homaifar [HoLaQi95]. In these
methods, a set of violation levels is considered for each type of constraint
and each violation level of constraints imposes a different level of penalty.
The disadvantage of these methods is that they require the setting of many
parameters. The number of parameters grows faster when the number of con-
straints and violation levels increase. So they are computationally expensive
ecause they in efindinggasglobalyminimum of a nonlinear penalty function.
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We rewrite the constraints a;(z) > 0 as —a;(x) < 0,7 = 1,2,...,s, and
ap —xp < 0,k=1,2,...,nand z; — b < 0,0l =1,2,...,n, as g;(x) < 0,1 =
1,2,...,8 4 2n. Then problem (12.1) can be written as

minierﬂgize f(x) subject to d;j(x) =0, j=1,2,...,t,
meRN
gi(x) <0, i=1,2,...,54 2n. (12.2)

With the penalty vectors o and 3, an example of a static penalty problem
for (12.2), p > 1, is
minir%ize L(z, o, 8), (12.3)
zeR™

where

s4+2n

L(z, . B) = f(ﬂc)JrZ ajldi()|” + Y Bimax(0, gi(x))”. (12.4)

=1

A static penalty method can be exact or inexact. For example, in (12.3),
if p =1 for (12.4), the method is an exact static penalty method; if p > 1, it
is an inexact static penalty method [Be99).

That is, when p = 1, there exist penalty values o and g that ensure the
minimum of the penalty function is exactly the CGM of P. However, when
p > 1, the method is inexact because it converges to CGM as an infinite
approximation of the penalty values.

The static penalty method of Homaifar [HoLaQi95] solves a similar prob-
lem to (12.3), but requires the choice of a very large number of parameters
and it is also an inexact penalty method. Thus, the common limitation of all
static penalty methods is that it is usually very difficult to choose statically
the appropriate values of penalties. Moreover, these methods were developed
to find CGM and do not allow finding a CLM for P. An alternative for finding
penalty parameters is offered by dynamic penalty methods.

Dynamic Penalty Methods

Dynamic penalty methods were proposed initially by Wang [WaLi06]. These
methods increase the penalty parameters gradually, instead of finding the
penalty values by trial and error.

Like the static penalty methods, a dynamic penalty method can be an
exact or inexact method, depending on the value of p. Moreover, it has the
same limitation as all static penalty methods because it requires finding global
minima of nonlinear functions.

There are many versions of dynamic penalty methods. A well-known one
is the nonstationary method, which solves a sequence of problems like (12.3),
with C > 0 and p > 1 constant parameters, at each iteration k, where

aghbmrag () + C. |d; ()]
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Bi(k + 1) = Bi(k) + C. max(0, g;(x)).
An advantage of this penalty method is that it requires only a few param-
eters to be tuned.
There are two other variations of global penalty methods that are exact
methods: the refuse penalty methods and the discrete penalty methods.

Refuse Penalty Methods and Discrete Penalty Methods

Refuse penalty methods were proposed by Hu [HuEb02] and Zhang [Zh05]. A
Refuse Penalty Method must start with a feasible point; it simply rejects all
infeasible points. It begins with one or more points and searches for others,
and if a new point is infeasible, it is rejected.

In this category, the main difficulty is to generate feasible initially points,
particularly when the feasible region is small.

Thus, this method solves the problem (12.2) considering

Ly(z,a.0) = f(z) + o' P(d(z)) + 67 Q(g()),
where
P(d(z)) = +oo if d(x) #0, P(d(x))=0ifd(x) =0,
Qg(r)) = +ooif g(x) >0, Q(d(x)) = 0if g(x) <0.

This is an exact penalty method. Given any finite penalty values o and g3,
the minimum point of the penalty function must be feasible and must have
the minimum objective value, and therefore is exactly the CGM of P.

Another exact penalty method is the discrete penalty method, which uses
the numbers of violated constraints instead of the degree of violations in the
penalty function. This kind of method is often used in finite element meth-
ods [Da07].

It follows, therefore, that the methods of global optimization of (12.2)
have limited practical application, because the search for the global minimum
is computationally expensive; techniques of global optimization, such as the
nonstationary method, are also slow, because they only get global optimality
with asymptotic convergence [KiGeVe83].

12.4.2 Local Optimal Penalty Methods

To avoid costly global optimization methods, local optimal penalty methods
(LOPM) were developed, to look for constrained local minima (CLM). These
include, for example, methods of the Lagrange multipliers and [;-penalty
methods, which are both exact penalty methods. These methods were cre-
ated to solve problems of nonlinear continuous optimization, that is, problems
such as (12.2), where f is continuous and differentiable and g and d may be
discontinuous and nondifferentiable.

In these methods, the goal is to find a local minimum & with respect to
the neighborhood N(i&) = {a* : ||a* — #|| <€ e e — 0} of z*.
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Definition 3 ([GoOrTo03]). A point & is a local minimum of P, with re-
spect to the neighborhood N(Z) if & is feasible and f(&) < f(x) for all feasible
x € N(x2).

Lagrange Multiplier Methods
The Lagrangian function for (12.2) with Lagrange multipliers A and p is
Lz, A\, p) = f(x) + Ad(x) + p"g(x).

Lagrange multiplier methods are designed for solving continuous nonlinear
programming problems (CNLPs), so this approach is limited to solving CNLPs
with continuous and differentiable functions and cannot be applied to solve
discrete and mixed-integer problems.

This method limitation is due to the fact that the existence of Lagrange
multipliers depends on the existence of the gradients of constraints and ob-
jective functions and the regularity conditions at the solution points.

Another local optimal exact penalty method is the [;-penalty method.

l1-Penalty Method

The [1-penalty method, introduced by Pietrzykowski in 1969, solves minimiza-
tion problems with the function [GoOrTo03]

t s+2n
Wz, p) = f(x)+p Y |dj@)] +p Y max]g(z),0]. (12.5)
j=1 =1

The theory developed around this expression shows that there is a one-
to-one correlation between the CLMs and the global minimum of [y func-
tion (12.5), when p is large enough [Be99].

The most appealing feature of this method is that one choice of y may be
adequate for the entire minimization procedure; making it less dependent on
the penalty parameter.

Function (12.5) forms the basis for many penalty methods proposed in the
literature.

The difficulty of this method is the minimization of the [;-penalty function
because it is nonsmooth. As a result of these obstacles, this unconstrained
approach is unlikely to be viable as a general-purpose technique for nonlinear
programming. Techniques similar to Lagrange methods work for continuous
and differentiable problems only.

12.5 Dynamic Penalty Methods

Unfortunately, the choice of suitable penalty parameters is, frequently, very
difficultssbecausesmostrofsthesstrategies for choosing them are heuristic.
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As an alternative to penalty functions, filter methods were introduced by
Fletcher and Leyffer [F1Le02]. Since then, the filter technique has been mostly
applied to sequential linear programming (SLP) and sequential quadratic pro-
gramming (SQP) types of methods.

A filter algorithm introduces a function that aggregates constrained vi-
olations and constructs a biobjective problem. In this problem, the step is
accepted if it either reduces the objective function or the constrained viola-
tion. This implies that the filter methods are less parameter dependent than
a penalty function.

The difficulties of choosing appropriate values of penalty parameters in
penalty methods caused nonsmooth penalty methods to fall out of favor during
the early 1990s and stimulated the development of filter methods, which do
not require a penalty parameter.

However, the new approach for updating the penalty parameter promises
to solve these difficulties. It will automatically increase the penalty parameter
and overcome this undesirable behavior, resulting in the dynamic penalty
methods.

Dynamic penalty methods adjust the penalty parameter at every iteration
so as to achieve a prescribed level of linear feasibility. The choice of the penalty
parameter then ceases to be heuristic and becomes an integral part of the step
computation.

An earlier form of the penalty update strategy is presented by Byrd et
al. [ByNoWa06], in the context of a successive linear quadratic programming
(SLQP) algorithm.

Other penalty strategies have been proposed recently. Chen and Gold-
farb [ChGo05] propose rules that update the penalty parameter as optimality
of the penalty problem is approached; they are based in part on feasibility and
the size of the multipliers; Leyffer et al. [LeLoNo06] consider penalty methods
for MPCCs and describe dynamic criteria for updating the penalty parameter
based on the average decrease in the penalized constraints.

The methods of Byrd et al. [ByNoWa06] differ from these strategies in
that they assess the effect of the penalty parameter on the step to be taken,
based on the current model of the problem.

12.6 Conclusion

In this chapter, we review and classify some of the most popular existing
penalty methods, and we discuss some of their assumptions and limitations.
This classification of the most popular existing Penalty Methods is essen-
tially based on the type of minimum (global or local) that can found and the
exactness of the solutions found (Exact or Inexact methods).
As future work we intend to create a web page with an application able
to solve any constrained and unconstrained nonlinear problem.
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As a first step we started to implement in the Java language the direct
search methods. The next step is to implement the exact penalty methods
and filter methods. It will then become possible to solve constrained nonlinear
problems without the use of derivatives or their approximations.
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13.1 Introduction

Transport and diffusion models of air pollution are based either on simple tech-
niques, such as the Gaussian approach, or on more complex algorithms, such as
the K-theory differential equation. The Gaussian equation is an easy and fast
method, which, however, cannot properly simulate complex nonhomogeneous
conditions. The K-theory can accept virtually any complex meteorological
input, but generally requires numerical integration, which is computationally
expensive and is often affected by large numerical advection errors. Conversely,
Gaussian models are fast, simple, do not require complex meteorological in-
put, and describe the diffusive transport in an Eulerian framework, making
easy use of the Eulerian nature of measurements.

For these reasons they are still widely used by environmental agencies
all over the world for regulatory applications. However, because of its well-
known intrinsic limits, the reliability of a Gaussian model strongly depends
on the way the dispersion parameters are determined on the basis of the
turbulence structure of the planetary boundary layer (PBL) and the model’s
ability to reproduce experimental diffusion data. The Gaussian model has to
be completed by empirically determined standard deviations (the “sigmas”),
while some commonly measurable turbulent exchange coefficient has to be
introduced in the advection—diffusion equation.

To overcome this drawback, we propose an analytical solution of the
advection—diffusion equation with any restriction to wind and eddy diffusion
vertical profiles, which is believed to give a better representation of the effects
due to the vertical stratification of the atmosphere and while maintaining the
simplicity of an analytical formulation.

C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 141
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13.2 Description of the Model

The nonstationary advection—diffusion equation that models air pollution in
the atmosphere is essentially a statement of conservation of the suspended
material. In a Cartesian coordinate system with the z-axis aligned in the
direction of the wind, the y-axis oriented in the horizontal crosswind direction,
and the z-axis chosen vertically upwards, this equation has the form [Ar95]

LS R LG LA T (13.1)
ot Ox Oy 9z  Ox Oy 0z ’ '

where € denotes the average concentration, u, v, and w are the Cartesian com-
ponents of the wind, and S is the source term. The terms u/c, v'¢/, and w'c’
represent, respectively, the turbulent fluxes of contaminants in the longitudi-
nal, crosswind, and vertical directions.

The concentration turbulent fluxes are assumed to be proportional to the
mean concentration gradient, which is known as Fick theory or local turbu-
lence closure:

oe
ox’

ac
W = Kago, V= Ky
where K, K,, and K, are the Cartesian components of eddy diffusivity.
This assumption, combined with the continuity equation, leads to the
advection—diffusion equation. For a Cartesian coordinate system in which z is
the height, we rewrite the advection—diffusion equation in the form

oc _dc _dc __0Je¢ 0 K@E 0 K@E 0 K@E g
5T oy T o (e )+ gy () + % (=52 +

(13.2)
fort >0,0<2<h,0<y< Ly, and x > 0, where h is the height of the PBL
and L, is a limit on the y-axis which is positive and far from the source. In
this chapter, we consider that the vertical (w) and lateral (v) components of
the mean flow are null. Moreover, the mean horizontal flow is incompressible
and horizontally homogeneous. We also neglect diffusion in the z-direction
(K; =0). In view of this hypothesis, we recast (13.2) in the form

Jc _0oc 0 Jc 0 Jc

9

We assume that when the pollutant is released, the dispersion pollutant
domain is not contaminated; that is,

o(x,y,2,00) =0 at t=0.

We also consider, respectively, zero flux in the z-direction at ground and
PBL top.as well as.in the y-direction. at y =0, L,:
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Kza—c =0 at 2=0, z, Kyg—yc

EP =0 at y=0, L,.

Finally, we assume a continuous point source of constant emission rate @,
written as [Ar95]

uwe(0,y,2,t) =Qd(z— Hs) 6(y),

where § is the Dirac delta, x =0, z = H,, and y = yq is the source position.

In order to solve the advection—diffusion equation for inhomogeneous tur-
bulence, we must take into account the dependence of the eddy diffusivities
and wind speed profiles on the height variable z. Therefore, we use the idea of
the advection—diffusion multilayer model (ADMM) method, where we perform
a stepwise approximation of these coefficients (see [CoEA06] and [MoEA0G]).
To reach this goal, we discretize the height h of the PBL into IV subintervals
in such a manner that inside each subregion the eddy diffusivities and wind
velocities assume average values:

1 #n 1 “n
K, = —/ Ko(2)dz, 7w, = —/ u,(z)dz
Zn T Zn—1 Jz,_4 Zn T Zn—1 Jz,_4
forn=1,...,N.

We are now in a position to solve the advection—diffusion equation for
each subinterval. Indeed, it is now possible to recast problem (13.2) as a set
of advective-diffusive problems with constant parameters; specifically, for a
generic sublayer we have

¢y, ¢, 9%e, 0%¢,,

— + Uy — = K 13.4

o T Ungy T Mwgpe THRm g0 (13.4)
for n = 1,..., N, where N denotes the number of sublayers and ¢, denotes

the concentration on the nth subinterval.

In addition, two boundary conditions are imposed at 0 and h, and continu-
ity conditions for the concentration and flux of concentration at the interfaces;
that is, we must have

Cn=Cpy1, 2=25, n=12_...,N—1,
¢y, OCpnt1
Kzngz 1 g, z=2zp, n=12...,N—1,

in order to uniquely determine the 2N arbitrary constants appearing in the
solution of the set of problems (13.4).

We now apply the Laplace transformation with respect to time in (13.4)
and set £ {¢,(x,y,2,t)} = I,(x,y, z,7) . This procedure leads to the station-
ary problem

_ar, _
T~ K

02I, 0T,
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At this point, proceeding as in [CoEAOQ6], we are in a position to solve
problem (13.5) by the GIADMT (generalized integral advection—diffusion mul-
tilayer technique). To this end, we begin by expanding the solution in the

series -
Z Cjn 7)Y (y)
VN;
where, as in the generalized integral transform technique (GITT), ¢;(y) =

cos(Ajy) and A\; = jm /Ly are, respectively, the eigenfunctions and eigenvalues.
Substituting (13.6) in (13.5), we arrive at

Iy(z,y,2,7) (13.6)

N 0G5 (2, 2,7) sy Vi (y)
Zun J oz J1/2 Z Cj n(x,zﬁ) ]\3[1/2
j=0 J

+2Kzn8 CJn(ZEZ’Y ¢J(y chnxz71f\;(y)
i=0

922 1/2 /27

where the double prime denotes the second-order y-derivative.
Taking moments and solving the resulting transformed problem by the
Laplace transformation technique with respect to the x variable, we find that

d°Cj (s, 2,7)

K. dz2

- (8 Un, + Kyn A? + 7) Ej_’n(sa Z, 7)

1 w]( 0)
_ (7 ijz > Q6(z— H,),

which has the well-known solution

Cin(s,2,7) = ClneRj"z + C’zne_RJ'"z

Q

IR

o [eRon Gt oG (), (13.7)

Q5

where ¢;,, denotes the Laplace transform of ¢; , with respect to the z-variable
and the parameters R;, and R, are defined by

sun + Ky, )\?-I-'y
R]n: K )

\/N K., (sun + Ky, )\2-1-7)

anj

'l;bj yO

Therefore, we obtain the coeflicients of the series solution given by (13.6)
by performing the inverse Laplace transformation on the transformed solution
appearing in (13.7).
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Applying the boundary and interface conditions, we determine the un-
known integration constants (Cy, and Cs,,) from the resulting linear system.
Once the coefficients ¢,; are known, we find that

Cn(x>y>zvt)
1 /ww S0 { 1 /“”“‘ 2 -5,
= — e’ — 4 — e’ Clne ]nz+c2ne n®
270 Je—ico j;o,/Nj 270 Je—ino [( )
+2RQ (eRM(z—HS) e—Rjn(z—Hs))H(z_Hs)]ds}dfy. (13.8)
Anj

To overcome the difficulty of evaluating the line integral appearing in the
solution given by (13.8), we perform the double integration numerically by the
fixed Talbot (FT) method [AbVa04] in the z-variable and by the Gaussian
quadrature scheme [StSe66] in the time variable.

13.3 Nonlocal Closure

Already some decades ago it was noted that in the upper part of convectively
driven boundary layers, the flux of potential temperature is counter to the
gradient of the mean potential temperature profile [Er42] and [De72]. The
mean potential temperature gradient and the flux change sign at different
levels, introducing a certain region in the convective boundary layer where
they have the same sign. This result was in contrast to the common view
in first order turbulent closure that turbulent diffusion is down gradient. In
order to also describe diffusion in these regions, [Er42] and [De72] proposed
to modify the usual applied flux-gradient relationship in K-theory approach

according to
Jdc
d— _K =
77—k (55 -1).

where 7 represents the counter gradient term.

Many schemes and parameterizations for the counter gradient term have
been developed. In this chapter, we use the parameterization proposed by van
Dop and Verver (2001) [VaVe01], based on the work in [WyWe91]; that is,

Sk ow 1L, O 1o} — oe
(1+ 5 Bz—i-raz)wc =-K, 55 (13.9)

where Sy, is the skewness, 17, is the vertical Lagrangian time scale, o, is the
vertical turbulent velocity variance and 7 is the relaxation time. The second
term on the left-hand side of (13.9) represents the nonlocal counter gradient
term as proposed in [VaVe01]; it is obtained by applying the Taylor expansion
to the turbulent flux [WyWe91]. Substituting the above ansatz in (13.1), we
arrive at the problem
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ic _|_7—a_26 +ﬁ8_26 +ﬂ§ +ﬂﬁﬁ _|_g7-a_26
ot ot? 0z Ot Oz 0z Ox ot Oz
0%c 03¢ 03¢ 0%c
= Kgr TR g T KTy t Ky (1310)

where g = S’“U—’;TL’“L In this equation, t > 0,0 < z < h, 0 <y < L,, where

L, is a large distance from the source, and = > 0.

We solve (13.10) by a procedure similar to the one above, using the solution
of the stationary problem obtained by the GIADMT method as in the works
of Costa et al. (2006) [CoEA06] and Moreira at al. (2006) [MoEAO06], and
applying the Laplace transformation technique with respect to the ¢ variable.
Finally, we obtain

cn(x7y727t)
) ¢+ico oS w() 1 &+ico
—om [ X an [ et oyt
211 / jgo N; 271 /
(—ioco £—1i00
+ % (eWFintCm)(z=Ha) _ o(Fjn=Cyn)(z=Ha)) [ (5 — Hs)]ds}d'y, (13.11)
anj
where
Bn

Fj, oK. (stn + Ky, A3 +7),

(sun + Ky, )\? + 5+ VUpTs + 772 + )\?'yTK L)

4
VN, K,
G v J n Gjn.

“ " (14 47) 5 (y0)

13.4 Numerical Simulation

In order to show the performance of the present solution of the advection—
diffusion equation for nonstationary conditions, and to evaluate the perfor-
mance of the proposed PBL parameterization, we applied the model using
the Copenhagen experimental datasets [GrLy84 ].

To do this, we had to introduce a boundary layer parameterization. The
literature contains many, widely different formulas for the calculation of the
vertical turbulent diffusion coeflicient [SePa98]. As examples of applications of
our new solution, we tested the vertical and lateral diffusion parameterization
suggested by Degrazia et al. [DeEA97] for convective conditions. The wind
speed profile was described by a power law expressed as in [PaDu88].
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The Copenhagen dataset was chosen since most of the experiments were
performed during moderately unstable atmospheric conditions, and without
strong buoyancy, so that ground-level crosswind integrated concentration can
be simulated by an advection—diffusion equation. The stability parameter z;/L
(L is the Monin—Obukhov length) indicates cases where the unstable PBL
presents weak to moderate convection.

Figure 13.1 shows the observed and predicted scatter diagram of centerline
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Fig. 13.1. Scatter plot of observed (Co) and computed (Cp) arc maximum level
concentration normalized with emission rate (¢/Q). The data between two external
lines are within a factor of 2 (Co/Cp € [0.5;2]).

ground-level concentrations for the solutions (13.8) and (13.11), normalized
with the emission source rate (¢/Q). This figure points out that a good agree-
ment is obtained between experimental data and the model considering the
local and nonlocal closure.

In Figure 13.2, we show the time evolution of pollutant concentration for
several source distances for the Copenhagen experiment assuming both local
and nonlocal turbulence closure. For all cases, we quickly realized that, as
time passes, the pollutant concentration reaches, as expected, the stationary
regime.

For the non-Fickian problem, we must notice the influence of the nonlocal
transport, once the asymmetry observed in the pollutant concentration plays
an important role, because it is responsible for the dislocation of the maximum
concentration peak.

Figure 13.3 shows an example of concentration distributions in the horizon-
tal (z,y)-plane at ground level for the local and nonlocal turbulence closure.
The lines represent isolines of equal concentration. Here once again we re-
alize the effect of pollutant dlspersmn for nonlocal turbulence closure when
compared ) egsense that we observe the increase of the
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Fig. 13.2. Time evolution of pollutant concentration for several source distances
for the Copenhagen experiment with (a) local turbulence closure and (b) nonlocal
turbulence closure.

maximum value of the concentration as well as its shifting to the right. We
also notice an asymmetry in the concentration, which does not occur for local
turbulence closure.

The results of the statistical indices used to evaluate the models are shown
in Table 13.1. The statistical indices are defined in [Ha89].

Table 13.1. Statistical indices used to evaluate the model performance.

Model Nmse Cor Fa2 Fb Fs

Local closure 0.29 0.81 0.78 0.26 0.13
Nonlocal closure 0.23 0.83 0.83 0.18 0.07
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Fig. 13.3. (z, y)-concentration cross sections at ground-level concentration normal-
ized with emission rate (¢/Q): (a) local closure and (b) nonlocal closure.

13.5 Conclusions

The good computational results obtained together with the analytical fea-
ture of the solution encountered in the approximation considered for the
advection-diffusion equation—except for the stepwise approximation of the
eddy-diffusivity coefficient—give us confidence that the proposed solution is
a promising and efficient tool for predicting air pollutant dispersion in the
atmosphere.
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14.1 Introduction

Let R = (—00,00), b > 0, 4, = {(t,s) € R* : 0 <t < b,0 < s < t},
Ay = {(t,s) € R?2:0 < s <t <b}. We consider a linear integro-differential
equation of the form

¥ (8) = p(y(t) + a(t) + / Ko(t, s)y(s)ds + / Ky(t, )y (s)ds, 0<t<b,
0 0

(14.1)
with given initial condition

y(0) =90, wo€R. (14.2)

We assume that Ko, K1 € W™ (Ay), p,q € C™¥(0,b], m € N = {1,2,...},
rveR, v<l1.

For given m € N and —oco < v < 1 we define W"™"(4;) as the set of all
m-times continuously differentiable functions K : A, — R satisfying

oN' (o oY 1 if v+1i<0,
‘(‘9—> (3_+8_> K(t,s) <cq 1+4|log(t—s)] if v+i=0,

(14.3)
with a constant ¢ = ¢(K) for all (¢,s) € Ay and all nonnegative integers ¢ and
j such that ¢ +j < m.

It follows from (14.3) (with i = 7 =0, 0 < v < 1) that the kernels Ky(t, s)
and K1 (t, s) of equation (14.1) may possess a weak singularity as s — t. In the
case v < 0 the kernels Ky and K; are bounded on A, but their derivatives may
be singular as s — ¢. In particular, if Ko =0 and K;(¢,s) = &(t,s)(t —s)7",

0 < v < 1, where k is an m-times continuously differentiable function on 4y,
then (14.1) is a Basset-type equation (see [BrTa89], [McSt83]).

C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 151
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The set C"™"(0,b] (m € N, —oo < v < 1) consists of continuous functions
y : [0,b] — R which are m-times continuously differentiable in (0, b] and whose
derivatives satisfy

_ 1 if j<1—vw
‘y(])(t)lgc 1+]logt] if j=1—-v ;,0<t<b, j=0,1,..,m.
ti=v=J if j>1—v

Throughout the text ¢ denotes a positive constant which may have different
values for different occurrences. Note that C™[0, b], the set of m times (m > 1)
continuously differentiable functions y : [0,b] — R, is a subset of C™"(0, b
for arbitrary v < 1. On the other hand, if y € C™¥(0,b] and v < 1 — k for
k€ {1,...,m}, then the derivative y*) is bounded on (0, b] and the derivatives
Y, ..., y*=1 of y can be extended so that y € C¥~1[0,b]. Here and below,
we denote by C°[0,b] = C0,b] the Banach space of continuous functions
y : [0,b] — R equipped with the usual norm ||y|| = max{|y(¢)| : 0 <t < b}.

If Ko, K1 € W™"(Ap), p,g € C"™7(0,b], m € N, v € R, v < 1, then
problem (14.1),(14.2) has a unique solution y € C™T1¥=1(0, b] (see [PaPe03],
[Pe04]). Thus, the solution y of problem (14.1),(14.2) may not belong to
C?[0,b]. In collocation methods, the possible singular behavior of the solu-
tion of (14.1), (14.2) can be taken into account by using polynomial splines
on special nonuniform grids [BrTa89], [Pe04]. A problem which may arise is
that the use of strongly nonuniform grids may create significant round-off
errors in calculations and therefore lead to unstable behavior of numerical
results.

The purpose of this chapter is to construct high-order algorithms for the
numerical solution of problem (14.1), (14.2) which do not need strongly graded
grids. To this end, we first introduce an equivalent integral equation reformu-
lation of the original problem. Then, following an approach used in [PeVa04],
we apply a smoothing transformation so that the singularities of the deriva-
tives of the exact solution of the resulting equation will be milder or disappear.
After that, we solve the transformed equation by a piecewise polynomial col-
location method on a mildly graded or uniform grid. Finally, some numerical
results are presented.

We note that collocation and related methods for various weakly singu-
lar Volterra integro-differential equations of the form (14.1), with K; = 0,
have been studied by many authors, see, e.g., [BaOr06], [Br04], [BrHo86],
[BrPeVa0la], [BrPeVa0lb], [KaPa03], [Pa05], [Ta92], and [Ta93]. We also re-
fer to [CaEtAl07], [PeTa06], and [PeTa08], where the numerical solution of
weakly singular Fredholm integro-differential equations is considered.
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14.2 Reformulation of the Original Problem and
Smoothing

Using the notation y’ = z and applying condition (14.2), we may rewrite
equation (14.1) as a linear Volterra integral equation of the second kind with
respect to z:

t s

t
A1) = / Ko(t, s) / (r)dr | ds+ / (o) + K (0,9 2()ds + 11). (1.4
0

0 0
t

f(t) = q(t) + yop(t) + o /Ko(t, s)ds, teo,b].
0

Lemma 1. Let Ko, K1 € W™Y(Ayp), p,q € C™(0,b], m € N, —co < v < 1.
Then equation (14.4) has a unique solution z € C™"(0,b].

The proof of this lemma can be found in [PaPe03], [Pe04].
Let us now introduce the class of functions ¢ defined by

plz) =0 0<z<bh deN (14.5)

Clearly, ¢ € C[0,b], ©(0) = 0, ¢(b) = b, and ¢'(x) > 0 for 0 < = < b. Thus,
¢ maps [0,b] onto [0,b] and has a continuous inverse ¢! : [0,b] — [0,b],
@ () = bld=D/d¢1/d g <+ < b. Note that ¢(x) =z for d = 1.

We are interested in transformations ¢ with d > 1 since they possess
a smoothing property for z(¢(z)) with singularities of z(t) at ¢ = 0 (see
Lemma 2).

Lemma 2 ([PeVa04]). Assume z € C"™"(0,b], m € N, v € R, v < 1. Let
2p(x) = 2(p(x)), x € [0,b]. Then z, € C™"4(0,b] with vg =1—d(1 —v).

Using (14.5), we make a change of variables in equation (14.4), in order
to obtain a new integral equation whose solution does not involve any more
singularities in its derivatives up to a certain order. Introducing in (14.4) the
variables transformation

t=op(x), s=ou), 7=¢(0),  poecl0b]

we obtain an integral equation of the form

x n
zp(x) = /Kow(x, u)(/zw(a)w'(a)da)du
0 0

+ [ [polare 0 + Kaoomzaudu+ folo), 0 <0< b, (140

ol Lal Zyl_i.lbl
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where

fo(x) = fle(x)), pol(x) = p(p(z)),
Koo (2, 1) = Ko(p(x), p(1)¢" (1), Kip(@, 1) = Ki(p(x), (1)@’ (1)

are the given functions and z,(x) = z(p(x)) is a function which we have to
find. Changing the order of integration in the double integral of (14.6) leads
to

(I - Ttp)ch = fgo» (14.7)
where [ is the identity mapping and

(Tozo)e) = [ Lotan)zalidu, = € 0.3 (14.)

0

with

Lo(x, 1) = po(x)¢' (1) + ' (1) [ Ko,p(x,0)do + Ky p(z, 1), 0<p<z<b
v

Due to (14.3) we have

1 for v < 0,
K (w, )| = |Ki((x). ()| @' (1) < ¢ q 1+ ][log(z —p)|  for v =0,
(x—p)" for v > 0,

where 0 < pp <z <b,i=0,i=1.Since Ko e W™ (4,), [ Ko,,(z,0)do is a

m
continuous function for 0 < p < x < b. Then, since p,, ¢’ € C[0,b], it follows
that Ly (x, p) is continuous for 0 < u < x < b and at most weakly singular
as i — x. Therefore, T, is compact as an operator from L*°(0,b) into C0, b].
Then, since f, € C0,b], it follows that equation (14.7) (and also (14.6)) has
a unique solution z, € C0,b]. Due to Lemmas 1 and 2, z, € C™"4(0,b],
vg=1-d(1—v).

14.3 Piecewise Polynomial Interpolation

For given N € Nand r > 1, let T}, = {tg,....tn : 0 =tg <t1 <--- <ty =
b} be a partition (a grid) of the interval [0, b] with the nodes

t; =b(j/N)", j=0,...N. (14.9)

Here the grading exponent r € [1,00) characterizes the nonuniformity of the
grid IT}: if > 1, then the grid points (14.9) are more densely clustered near
the left endpoint of the interval [0, b]. Further, let

S¥ (M) = {ue C®0,0] - uly, 1) € Tmo1,d =1,., N}, k=0, k=1,

i—1>

,t5] € 7T'm_1,j = 17 7N}
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be the underlying spline spaces of piecewise polynomial functions on the grid
1I},. Here 7, denotes the set of polynomials of degree not exceeding m —1
and uly,_, 4, is the restriction of u to the subinterval [t; 1,t;], j = 1,..., N.

In every subinterval [t;_1,;] C [0,b], we introduce m interpolation points
tj1, ..., tjm as follows:

tjk = t]'_l + nk(tj - tj_l), k= 1, ceey, My, j = 1, .. .,N, (1410)
where the parameters 71, ..., 7, do not depend on j and N and satisfy
0<m<- <y <1 (14.11)

To a given continuous function z : [0,0] — R we assign a piecewise
polynomial interpolation function Pyz = PJ(\,m_l)z € S,(n__li (IT}) such that
(Pnz)(tjx) = 2(tjr), k=1,...,m;j=1,...,N. We also introduce an in-
terpolation operator Py = PJ(\,m_l) which assigns to every continuous function
z: [0,b] — R its piecewise polynomial interpolation function Py z.

In what follows, for given Banach spaces E and F we denote by L(E, F)
the Banach space of linear bounded operators A: E — F with the norm
||A]] = sup{[[Az] : z € B, ||2]] <1}

It follows from [Va93] that the norms of Py € L(C[0,b], L°°(0,b)) are
bounded by a constant ¢ which is independent of IV,

[[Pnllzcro.p),n0) < ¢ N EN, (14.12)

and
|z — Pn 2|l @p) — 0 as N — oo, (14.13)

for every z € C]0,b]. Moreover, if z € C™"(0,b], m € N, —oco < v < 1, then

sup |z(x) — (Pw2)(2)| < e, (14.14)
z€[0,b]
where
N—m for m<l—-v,r>1,
N-™(1+1logN) for m=1—-v,r=1,
é,%n,lar) ! N—m for m=1-v,7>1,
N-r(1-v) for m>1-v,1<r<m/(1-v),
N-™ for m>1—-v,r>m/(1—-v).
(14.15)

14.4 Numerical Methods and Convergence Analysis

The approach proposed here for the numerical solution of problem (14.1),(14.2)
can be described in the following three steps.
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Step 1. We choose a function ¢ of the form (14.5) and, introducing in
(14.4) the variables transformation ¢ = ¢(x), we obtain the new integral equa-
tion (14.6).

Step 2. We find an approximation vy to z,, the solution of equation (14.6),
determining vx = VN m,rp € S, (- 1) 1(II%) by the standard collocation method
from the conditions

tjk M
on (tjr) = /Kow ks 1 /UN )dﬂ
0
tik

+/ pw(tﬂc ‘P(N )+ K so(tjka )} (N)dﬂ+fw(tjk)a (14.16)
0

fork=1,...,m; j=1,..., N, with the points {t;,} defined by (14.10).
Step 3. We determine an approximation uy = 4N m,re to y, the solution
of the Cauchy problem (14.1), (14.2), setting

un(t) =yo + /UN(go_l(s))ds, 0<t<b. (14.17)
0

Remark 1. If we use the parameters ;1 = 0, 5, = 1 in (14.11), then the
resulting collocation approximation vy belongs to the smoother polynomial
spline space qug)_l(ﬂ}i,).

Remark 2. Conditions (14.16) lead to a system of linear equations whose ex-
act form is specified by the choice of a basis in the space Sr(n__li (ITy) (or in
Sl (ITR) i = 0, 7 = 1),

Remark 3. If in (14.5) d = 1, then the method described above coincides with
the standard collocation method studied in [Pe04] (see also [BrTa89]).

Theorem 1. Assume that p,q € C™Y(0,b], Ko, K1 € W™¥(4,), m € N,
—o0o < v < 1. Let ¢ be the transformation given by (14.5). Finally assume
that the collocation points (14.10) associated with the grid points (14.9) of the
partition IIy, are used. Then, for all sufficiently large N € N, say N > Ny,
the method (14.17), (14.16) determines unique approzimations uy and vy
to the solution y of the Cauchy problem (14.1), (14.2) and its derivative y’,
respectively. Moreover, for N > Ny the following error estimates hold:

(maydaT)

< 14.1
fax uy () —y(t)] < cey ™, (14.18)
sup [on (g™ (1)) — ¢/ (1)) < el (14.19)
0<t<b

Here I/d =1- d(l — l/) e%n P4 s defined by (14.15) and c is a positive
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Proof. We consider (14.7) as an operator equation in L°°[0,b). We already
know (see Section 14.2) that equation (14.7) is uniquely solvable in L°°[0, b)
and its solution z, € C""4(0,b]. Furthermore, conditions (14.16) allow the
following operator equation representation:

UN — PNTLpUN = PNpr, (1420)

with 7, given by (14.8), and Py introduced in Section 14.3. From (14.12)
and (14.13) we obtain that |7 — PxT||z (L= (0,6),5(0,6)) — 0 as N — oo. This
together with the boundedness of (I —T},)~" in L>(0,b) yields that I — PyT),
is invertible in L°°(0, b) for all sufficiently large N, say N > Ny. Furthermore,
it follows that the norms of (I — PyT,)~! are uniformly bounded in N,

I(I = PNTp) Ml e o), 00)) < ¢ N > No, (14.21)

for some constant ¢ which is independent of N. Thus, equation (14.20) has a
unique solution vy € S5 )(IT%) for N > Nj.

We have vy — 2, = (I — PnT,) " (Pnzy — 24), N > Np, where z,, is the
solution of equation (14.7). Therefore, using (14.21) we obtain

lon = 2pllL=(0,6) < €llPnzp = 2l L2 0,0)- (14.22)
Further, we have

lon = 2pllL<(0.4) = sup |on(z) = 24(x)] = sup |ox (™" (1) — v (1),
£€[0,b] t€[0,b]

where z, € C™"4(0,b], vg = 1 — d(1 — v). This together with (14.14) and
(14.22) yields the estimate (14.19). Since

lun(t) —y(t)| < [|on(p~1(s)) —y'(s)|ds, 0<t<b,

o o

the estimate (14.18) is a consequence of (14.19).

Remark 4. According to Theorem 1, in the case m > 1 — vy = d(1 — v), the
estimate Jlmax, lun(t) —y(t)| < ecN~™ holds for r > m/d(1—v). If v is close to

1, this condition on 7 may be too restrictive. However, if K1 € W™V ~1(A),
then the condition on r can be relaxed, as shown in the following theorem.

Theorem 2. Let the conditions of Theorem 1 be fulfilled and let K; €
Wmv=L(A,). Then, with the notation of Theorem 1, we have the following
estimates, for N > Ny:

1)if1<m<2—vg=14+d(1—v), then

max |un(t) —y(t)| < cN~™ forr > 1,
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2) if m=2—uvy, then

{ N-™(1+1log N) forr=1,

max [uy () —y(t) <cq yom for r > 1,

0<t<b

3) if m>2—uvg, then

N-T(2-va) for 1 <r<m/(2—wvy),
max |uy(t) —y(t) <cq N ™(1+1logN) for r=m/(2 —vg),
0st=b N—™ for r>m/(2—vg).

The proof of Theorem 2 will be given in a forthcoming paper where the
superconvergence properties of the method proposed in Section 14.4 will also
be discussed.

14.5 Numerical Results

We considered the following initial value problem:

¢ t
y'(t) =y®) +q(t) + / (t—s) "y(s)ds + / (t—s)"" y/(s)ds, 0<t<b,
0 0
(14.23)
with 0 < v < 1 and the initial condition

y(0) = 0. (14.24)

The forcing function ¢ has been selected so that y(t) = t>~ is the exact
solution to (14.23), (14.24). We note that this is a problem of the form (14.1),
(14.2), with yo = 0, p(t) = 1, Ko(t,s) = (t —s)7, Ki(t,s) = (t—s)"¥!, and

1 1
q(t) = (2—1/)751_”-|-t2_”/ (l—x)_”zz_”da:-l-(2—1/)733_2”/ (1—z) " o~V da.
0 0

In this case it is easy to check that Ko € W™V (4,), K1 € Wmr=1(4,),
p,q € C™"(0,b] for arbitrary m € N.

The problem (14.23), (14.24) was solved numerically by the method de-
scribed in Section 14.4 for b=1/2, m =2, v =1/2,n; = 1/4, n2 = 3/4, and
r = 1. In Table 14.1, some results for different values of the parameters N and
d are displayed. The quantities d 4 and 53\,’ 4 are approximate values of the er-
rors max{|uy (t) —y(t)| : 0 < ¢t < b} and sup{|un (e~ 1(#)) —y'(t)] : 0 < t < b},
respectively. They have been calculated as follows:

On,g = max{|un (1) —y(m)|: 1 =1,..,10; j =1,...,N},
O g = max{|vy (7 (ri)|:1=1,...10; j = 1,....N},
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where Tj| = tj_l-l-l(tj —tj_l)/lo, l=1,..,10, j =1,..., N, with {tj} defined
by (14.9) for b = 1/2. The ratios

PN.d = ON/2.a/ON.ds PNa = Ony2.a/ON.as

characterizing the observed convergence rate, are also presented.

Table 14.1. Numerical results for the problem (14.23), (14.24).

N ON,1 ON,3 ON,5 N ON3 N5
PN,1 PN,3 PN,5 PQ\J 1 PQ\J 3 PQ\J 5

10| 1.06 x 1072|5.72 x 107°2.97 x 107%|2.44 x 1072|1.45 x 1073|9.15 x 10~*
2.829 5.525 4.332 1.386 2.716 3.938

20| 3.72 x 1073[1.42 x 1076|7.27 x 1077|1.74 x 1072|5.19 x 10%[2.30 x 10~*
2.829 4.031 4.086 1.401 2.789 3.971

40| 1.32 x 1073|3.52 x 107 7[1.81 x 1077|1.24 x 1072|1.84 x 107%|5.78 x 10~°
2.829 4.030 4.022 1.408 2.815 3.986

80| 4.68 x 107%|8.77 x 1078[4.51 x 1078|8.75 x 1072|6.53 x 107°|1.45 x 10~°
2.828 4.030 4.013 1.417 2.818 3.986
2.828 4 4 1.414 2.828 4

If m = 2 and v = 1/2, then, for sufficiently large N, we obtain from
Theorem 1 that

N—d/2 for 1<d<4,
On.g & sup lon (071 (t) =y ()| <c{ N=2(1+1logN) for d=4,
O=t<b N2 for d > 4.

Thus, the ratio py ; ought to be approximately (N/2)=42/N=4/2 = 29/2 for
1 <d< 4 and 4 for d > 4. In a similar way, by applying Theorem 2 we would
expect the ratio pn 4 to be approximately 23/2 for d =1 and 4 for d > 3.
In particular, the values of pn.1, pn3, PN5, Phis Phss P ought to be
approximately 2.828, 4.000, 4.000, 1.414, 2.828, 4.000. These values are
given in the last row of the Table 14.1 for the case m =2, v =1/2, n; = 1/4,
and 7 = 3/4.

As we can see, the numerical results displayed in Table 14.1 are in good
agreement with the corresponding theoretical estimates given in Theorems 1
and 2.
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15.1 Introduction

We discuss a numerical method for certain integral equations of the form
L
I(t) = / k(z,t)p(z)dz, 0<t<T, (15.1)
0

where I is a smooth increasing function with 7(0) = 0, L and T are positive
constants, and the kernel k(-,-) satisfies the following assumptions:

(i) k(-,-) is continuous and bounded on [0, L] x [0,T] — {(0,0)}, positive on
(0, L] x (0,T], and k(-,-) € C*((0, L) x (0,T)).

(ii) k(x,0) = 0 for = > 0 and there is a positive constant x with k(0,t) > &
for t € (0,T7.

(iii) 01k < 0 < Oak on (0, L) x (0,T") (we use the notation 9; to indicate the
partial derivative with respect to the jth variable).

Our study of this class of Fredholm integral equations of the first kind is
motivated by a mathematical model of an aspect of the olfactory system of
frogs (see [FGO06]). The function of the olfactory system is to transduce an
odor stimulus into an electrical signal that is fed to the nervous system. This
transduction is accomplished by a cascade of chemical processes that leads
to an influx of ions through channels in very thin hair-like features, known
as cilia, that reside in the nasal mucus. The potential difference across the
membrane forming the lateral surface of the cilium resulting from this ion
migration produces the electrical signal.

A morphological feature of interest is the distribution of ion channels along
the length of the cilium. In an experimental procedure developed by S.J.
Kleene, a single cilium is drawn into a recording pipette containing a solution
of sodium ions and the cilium is detached at its base. The pipette is then
emersed in a bath of a channel activating ligand (cAMP: cyclic adenosine

C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 161
Volume 2: Computational Methods, DOT 10.1007/978-0-8176-4897-8 15,
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monophosphate), allowing the agent to enter the cilium at its open base. The
agent then diffuses along the cilium from its base to its closed end, opening
ion channels as it goes. Sodium ions enter the interior of the cilium through
the opened channels, inducing a potential difference between the exterior and
interior of the cilium. The resulting current signal I(t) is measured by the
pipette and recorded. The integral equation model that motivates this work
is intended to deduce the spatial distribution of ion channels along the length
of the cilium from this electrical signal.

The concentration c(x,t) of the activating agent satisfies a diffusion equa-
tion and the recorded current I(¢) is given by (15.1), where L is the length
of the cilium, p is the density of ion channels along the length of the cilium
(x = 0 corresponds to the base), and the kernel k(-,-) is given by a Hill’s
function,

c(z, )"

(@, )+ K{y’

k(z,t) = Jo (15.2)

where n and Jy are positive constants and K /5 is half the bulk concentration
of cAMP in the bath (see [FGO06] for details). Note that conditions (i)—(iii) are
satisfied for kernels of the form (15.2), where c satisfies the diffusion equation
with initial condition equal to the bulk concentration K of cAMP in the bath.
See Figure 15.1.

It is well known that equations of the form (15.1) are ill posed, necessitating
special care in their numerical solution (see, e.g., [G84]). As an indication of
this difficulty, we illustrate a naive numerical method for (15.1). Here, we use
uniform partitions of space and time, that is,

)

S

O0<y1 <---<y~n=1L, y; =35y, Ay=

O<ty <<ty =T, tj:jAt, At =

)

=21

and define »
J
Aij = ']0 / k(y,ti) d_?/ and Fi = I(fl)
JYYji—1
We are interested in finding a piecewise constant approximation of p, that is,

p°(y) = P}S for y € [y;-1,v4],

which satisfies Ap° = F'. If this straightforward approach is used, the matrix
A tends to be ill conditioned, as shown in Table 15.1. These condition numbers
are an indication of the ill-posed nature of the problem (15.1), a phenomenon
that has been well studied for decades.

15.2 Tail Clipping

Figure 15.1 depicts typical behavior of kernels of this type; the “fronts” k(-, )
movegpfromypleftptoprightyasytpinereases. It is evident that for a given ¢, the
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Table 15.1. Condition numbers for the naive scheme.

N 10 15 20

Condz(A)|| 5.4 x 10° 1.3 x 10*°]| 2.3 x 103

relatively flat “tail” of the front k(-,t) contributes little information on p in
the tail region. The method discussed below is a kind of marching scheme that
attempts to mitigate this lack of information by systematically truncating the
tail.

Hill Function Values
o

03F

0 5 10 15 20 25 30 35 40
X-Positioninpu m

Fig. 15.1. Propagation of the kernel as the ligand diffuses into a cilium.

The proposed numerical method begins with a small positive parameter e
which plays a role akin to a regularization parameter. As will be seen below,
the function of this parameter is to remove the flat tail of the kernel.

Lemma 1. Suppose 0 < ¢ < k(L,T). Then there is a unique T'(e) € (0,7T)
satisfying
k(L,T(e)) =e.

T(-) is an increasing function, T(e) — 0 as € — 0% and T(e) — T as € —
k(L. T)".

Proof. Since k(L,0) = 0 and k(L,-) is strictly increasing, the existence of a
unique such 7'(e) is ensured. If 0 < €; < €2 < k(L,T), then by (iii)

0< €2 — €1 = k(L, T(EQ)) - ]{}(L,T(El)) == 82]{}(L,9)(T(62) - T(El))
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for some 0 € (0,7") and hence, by (iii), T(e1) < T'(e2). If for some sequence
en — 0, T'(€y,) clusters at o > 0, then by continuity, k(L, &) = 0, contradicting
(i). On the other hand, if €, T k(L,T) and {T(e,)} clusters at t < T, then
k(L,t) = k(L,T), which contradicts (iii).

Remark 1. Note that for the front-tracking algorithm T'(e) will become the
final value in our time partition.

Lemma 2. Suppose 0 < € < min{k,k(L,T)}. For 0 <t < T(e) there is a
unique x(t) satisfying k(z.(t),t) = e. Also,

(a) for fized € > 0, z.(-) is an increasing function and z(t) — 0 as t — 07;
ze(t) = L ast — T(e)~, and

(b) for each t € (0,T), x(t) is a decreasing function of ¢ and x.(t) — L as
e— 0T,

Proof. If t < T'(e), then by (iii), k(L,t) < k(L,T'(¢)) = €. Also, by (i), k(0,t) >
€. As k(-,t) is continuous and strictly decreasing, a unique such z(t) exists.
(a) If t1 < tg, then for some positive 6 and ),

O = k(xe(tl),tl) — k(we(tg), tg)
= 01k(0,t1)(zc(t1) — zc(t2)) + O2k(zc(t2), ) (t1 — t2),

and it follows from (iii) that z.(t1) < x.(t2). Suppose t, | 0 and z.(t,) |
x* > 0. Then, by continuity, k(z*,0) = ¢ > 0, contradicting (ii), and hence
z(t) > 0ast— 0.

Let t,, T T'(€). Then, since x(t,) is increasing and bounded, z.(¢,) T x*,
say. By continuity, k(z*,T(e)) = e = K(L,T(¢€)). But k(-,T(¢)) is one-to-one,
and hence z* = L.

(b) Let €1 < €2, then k(xz, (t),t) < k(x.,(t),t) and hence for some positive 6,

alk(eﬂt)(xﬁ (t) - xéz(t)) <0

and hence, by (iii), z¢, (t) > @, (¢).

Suppose z., — xo < L for some sequence €, | 0. Then, by continuity,
k(zg,t) = 0. But then, k(L,t) < k(xo,t) = 0 since xg < L, which contradicts
(i)

Remark 2. Note that by the implicit function theorem (see, e.g., [HS74]),
z.(-) € CY0,T) and, by (iii),

Ook

/

)= =2 (2e(4), ) > 0.

() =~ g ) ) >

In particular, z., extended by continuity to [0, 7], maps [0, 7] onto [0, L] in a

one-to-one manner, is continuously differentiable on (0,7"), and has an inverse
o . . . (0,1).
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Our numerical method is based on clipping the flat tail of the kernel in

the following way. For 0 <t < T'(e), let

_ k(:l?,t), OS.’ESIBE(t),
he(w,t) = { 0, z.(t)<az<L.

Now define p.(-) by

L
I(t) = /O k() pe(w)da = (Kopo) (). (15.3)

Remark 3. The existence of a unique solution of (15.3) for suitable I and
E(-,-) is provided by Proposition 1 below. Equation (15.3) is, on the face of it,
a Fredholm equation of the first kind. However, if p, satisfies (15.3), then it is
also the solution of a Volterra equation of the second kind—a typically well-
posed problem. This gives credence to (15.3) being a type of regularization
method (but not quite: see the remark following Proposition 2).

We note that (15.3) may be written as
ze(t)
I(t) = / k(x,t)pe(z)dx, 0<t<T(e). (15.4)
0

Remark 4. If (15.1) is assumed to have a solution p € L? for a given I € L?,
then in fact I inherits the smoothness of k giving I € H'. So we may as well
assume that I € H'.

Proposition 1. If I € HY(0,T) and I(0) = 0, then p. is a solution of the
Fredholm equation of the first kind (15.3) if and only if it is a solution of the
Volterra equation of the second kind

b= )+ 1 [ Meaplads, 0<z<L, (155)
€Jo
where p p
_ % ; __a -1
) = L1 e /e bew) = ke a(2)
Proof. The substitution z = z(t) shows that (15.4) is equivalent to

1) = [ heaplo)is

where k(z,2) = k(z,27'(2)). But, since I € H' and I(z7'(0)) = I(0) = 0,
this is equivalent to
(7 dk

dizf(aze_l(z))— ; E(z,x)pe(x)dﬂc-l-l;:(z,z)pe(z).

But

];}(Z, Z) = k(sze_l(z)) = k(we(t)’t) =6
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Now, by standard L2-theory ([S70], Chapter 2), the Volterra second-kind
equation (15.5) has for each ¢ > 0 a unique solution p. that depends (L?)
continuously on f. In particular (using I = 0), we have the following.

Corollary 1. N(K.) = {0}.
Proposition 2. The range of K. is a proper dense subspace of L?[0,T].

Proof. First note that

/ ke(z,t)g /ZE ‘o) k(z,t)g(t)dt.

Hence, if g € N(K}), then

)
/ k(x,t)g(t)dt = 0.
T

Setting 7 = x_*(z), we then have

=2 | Hadr). 090t = () r)a)+ [ ouktar), e a0

+ /OT EY (7, t)g(t)dt

where

ET(7,t) = d1k(zc (1), t) (7).

€

Hence, by the standard Volterra theory, g = 0. Therefore, {0} = N(K}) =
R(K.)*. It follows that R(K,) is dense; however, R(K.) does not exhaust
L?[0,T] since K, is compact and non-degenerate (see, e.g., [G77]).

Remark 5. So, (15.4) is not a regularization method in the full sense that
Tikhonov regularization is, since a solution is guaranteed to exist only for [
in a dense subspace of L2, but there are functions I € L? for which (15.4) has
no solution.

First, we give an estimate for the residual,
I—Kpe=Kp—Kpe.

Proposition 3. If p. € L?0, L] and {||pc|l2}e>0 is bounded, then

L
/0 k(e 1)(p(z) — pe())dz| = O(e).
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Proof. We have

L L

0= / k(x,t)p(x)dzx — ke(x,t)pe(x)dx
0 0

L L

- / k(. 1) (p(x) — pe(x))di + / Kz, )p (),

0 ze(t)

and hence, since k(z,t) < e for z > z(t),

L
< / pel()|dx

L
/ k(e 0)(p(e) — pe(@))de
0 e(t)

L
< e/ Ipe(@)|dz < V||l
0

We now give a weak convergence result assuming that (15.1) has a unique
solution.

Proposition 4. If N(K) = {0} and {||pcll2}es0 is bounded, then p. — p
(weak convergence) as € — 0.

Proof. R(K™*) is dense since N(K) = {0}. For ¢ € R(K*), say ¢ = K*¢, we
have (using (-, -) for the L? inner product):
(pe: ) = (Kpe, ) = (Kpe—Kp, ) +(Kp,¢b) = O(e)+{p, K*¢) = O(e)+(p, ¢)

and hence (pc, ) — (p, ). Since {p.} is bounded and the convergence takes
place for ¢ in a dense set, it follows from the Banach—Steinhaus theorem that

Pe — -

15.3 A Numerical Method

Our numerical algorithm is based on piecewise constant spline approximation
and collocation applied to equation (15.3). We define a sequence of wavefront
points (computed using the bisection method)

The existence of the z;’s is guaranteed by Lemma 2. Recall that, at time ¢,
we define x; as the point where the “wave” k(-,t;) drops within e of zero. We
let

n
pFT = ZPJFTX(IJ'—thb (15.6)
j=1

where xs denotes the indicator function of a set S. The collocation equations
are then

.M. (15.7)
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Proposition 5. Fquations (15.7) have a unique solution of the form (15.6).
Proof. For i =1, (15.7) reads

Zp / () Xy o) (2 = T / k(e t)de
0

by the definition of k.(-,); therefore,

T (1) (/OZ k(x,tl)dm> N

We find inductively that {p;”} are uniquely determined. Thus, for i > 1,
L n
1) = [ ) 3 (2
_ Zp / k(@ ti)X ()1 ;) (T)dT + pF / k(x,t;)dz,
which uniquely determines pi'!"

Pl = (I(t Zp / (@ b0z, 1’“””(””)“)</:i1k($’ti)dw)_l

G-

- (I(ti) —;pr /;_ k(x,ti)da:> (/:_ k(x,t,-)dm> _1.

Hence, the {pf"} are uniquely determined by an explicit marching procedure.

It is natural to define a related matrix equation for this process. Letting

zj
Hi; =/ k(xz,t;)dx for j <i and H;; =0 otherwise,
ZTj—

j—1

we observe that Hp'T = F.

For comparison, a Tikhonov regularization method is developed. Here, we
use the uniform partitions of space and time in variables y and ¢ defined
earlier. We are interested in finding a piecewise constant function

y) = pJT for y e [3/j—17yj]7

which gives App & F. The Tikhonov approximation pr, with parameter Gy,
then satisfies

where f(r = ,6||A||C2>o
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Fig. 15.2. Comparison of front-tracking (A) and Tikhonov (B) channel distribution
solutions with 7" = 0.475 on synthetic data. In (A) we used ¢ = 0.2 and in (B) we
took 3 =1 x 1076.

We first treat a test problem. A “true” channel distribution prpue(z) is
created; the corresponding current is defined via the original continuous sys-
tem of equations. The methods are then used to develop approximations to
Prrue- Figure 15.2 displays the resulting p’s for our front-tracking method
pFT in (A) and the Tikhonov method p” in (B). Approximation errors were

computed by the formula
i lo(e) = pi™" | Ay
N
Die1 \p(zi)|Az;

where “Appx” represents either the “FT” or “T” approximations.

EAppac =

b

Table 15.2. Errors (formula Eapp.) and condition numbers for front-tracking ap-
proximations of p with N = 15 at varying T values as defined by ¢; see Figure 15.2.

¢ || Cond2(H) ||FT Error||Time T

0.1([5.222 x 10?|| 0.8313 || 0.418

0.21]/2.580 x 10%|| 0.7987 || 0.475

0.3|/1.704 x 10%|| 0.8691 || 0.522

We were 1nterested in the effect that variations in € and § had on the errors

Ol LE ‘UI—I.LI

We indeed find that this has an effect.
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Table 15.3. Errors (formula F4ppz) and condition numbers for Tikhonov approxi-
mations of p with N =15 at T'= 0.475 at varying values for 3; see Figure 15.2.

Iéj Br Conda (AT A + prI)||Tikhonov Error
1.0 x 107°{[4.894 x 10~* 7.265 x 10% 1.022
1.0 x 107°(|4.894 x 10~° 7.265 x 10° 0.995
1.0 x 1077{[4.894 x 10~° 7.265 x 10° 1.013

Table 15.2 shows our results for the front-tracking approach and Table 15.3
shows them for the Tikhonov scheme (using the same final T as gives the best
result for the front-tracking method).

Finally, Figures 15.3 and 15.4 display the results for the front-tracking and
Tikhonov schemes in a sample case with experimental data. Front-tracking
predicts 461 CNG channels and Tikhonov predicts 451 for the 70 pm cilium.
In each we had T = 2.099.

(A) (B)

80

60 q

Channels/Length (1 m)
Current (pA)

o - True i
=—— Front Track
20 40 60 o 0.5 1 1.5 2
Cilia Length x in u m Time (Seconds)

Fig. 15.3. Ton channel distribution and current from front-tracking method applied
to experimental data with ¢ = 0.2.
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A Mixed Two-Grid Method Applied to a
Fredholm Equation of the Second Kind

L. Grammont

Université de Saint-Etienne, France; laurence.grammont@univ-st-etienne.fr

16.1 Introduction

The purpose of this chapter is to compute at a low cost an approximate solu-

tion of a Fredholm integral equation at a given accuracy. Vainikko proposed

to compute the Nystrom approximation of order n with quadrature two-grid

iterations. We propose here to compute it with a two-grid method based on a

projection method of a new type developed by Kulkarni. We will theoretically

compare the absolute errors and the complexities of these two approximations.
Let T be the integral operator

Tu(t):/o k(t, z)u(x)dx,

where & € C™ ([0,1] x [0,1]).
Consider the integral equation of the second kind

u—"Tu=f, (16.1)

where f € C™]0,1]. We will assume that this equation has a unique solution.
We deal with the problem of looking for an approximate solution of the
integral equation (16.1).
It has been stated in [We03] that, using O(n) evaluations of f and k, the
optimal accuracy which an algorithm can achieve is of the form:

lw = unllo < en ™™ ||f|lm, m” =min(m,m’/2), (16.2)

where ¢ is a constant independent of n and f. An algorithm which produces

a solution with an accuracy O((%)m ) using O(n) evaluations of f and k is
said to be optimal. As Werschulz wrote in [We03], one should use the term
quasi-optimal because we ignore the constant multiplicative factor ¢. We will
focus on the contribution of the multiplicative factor in the error estimation.

C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 173
Volume 2: Computational Methods, DOT 10.1007/978-0-8176-4897-8 16,
© Birkhauser Boston, a part of SpringeriScience + Business Media, LLC 2010
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For the cases in which it is big, we cannot ignore it and the choice of the
method shall take it into account even if the method is “quasi”’-optimal.

The Nystrom approximation provides a solution u,, whose error estimate is
[lu—wunllo = O(n~™), where u is the exact solution of (16.1) (see Theorem 2.1,
p. 98 in [Va05]). This algorithm creates a linear system of size n which can
be solved in O(n?) flops.

In [Va05], Vainikko shows how the amount of work can be reduced to
O(n?) using two-grid iterations. Also, his third step consists in reducing the
computational cost to O(n) using a cheaper approximation of the kernel which
maintains the accuracy (16.2) (Theorem 2.2, p. 99). In this chapter, we propose
to perform a two-grid projection method proposed by Kulkarni in [Ku04]
instead of the quadrature two-grid method. The third step is the same as
in [Va05]. The accuracy of both methods is (%)m but the multiplicative factors
are not the same. Their comparison is the purpose of this chapter.

We adopt the following notation:

i,jk B 8i+j k

Dk = Oitdix’

L*>° = L]0, 1]: the space of all equivalence classes of essentially bounded
Lebesgue measurable functions on the interval [0, 1], equipped with the norm
|[lo = esssup{|= ()] : £ € [0,1]}.

C = C[0,1]: the space of real-valued continuous functions defined on
[0,1], with the norm ||z||¢ = sup{|z(¢)| : t € [0,1]}.

C™ = C™[0,1]: the space of all the real-valued functions defined on [0, 1],
whose first m derivatives are continuous on [0, 1].

@ the ith derivative of .

m .
Izl = 3 [|2?]|o: the norm on C™.
i=0

Let £(X,Y) be the set of all bounded linear operators from the normed
space (X,||.||x) into the normed space (Y,||.]]y), and let £(X) denote L(X, X).
K
For K € L(X,Y), we write | K||z(x,y) = sup ” m||y
zeX ”x”X
1Ellp.q =200 Z?:o D" k|lo.

The Nystrom approximation relies on a quadrature formula, constructed
as follows.

Let (xj)j=1,.,n be a partition of [0,1]. We assume that sup{z;4i,n —
Tjmn, .7 = 0" <o Qn — 1} < Tl_l. Then

1 dn
/0 v(y)dy = ij,n'v(wj,n) + @n(v),

=1
where

" -
eal < g (5) Tl for v OO Y gl <

Jj=1
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16.2 The Nystrom Two-Grid Method

In Section 3 of [Va05], Vainikko recalls with short proofs some convergence
results for the two-grid iteration method applied to the quadrature system.
But he does not express the multiplicative factors in his estimations. That
is the aim of this section: we resume the results of [Va05] incorporating the
explicit expression of the multiplicative constants.

Let us recall the quadrature two-grid method, which corresponds to the
iteration method 1 for the Nystrom method in [At97] (p. 249). The coarse
level is denoted by v <« n and the Nystrom coarse approximate operator by
T,:

ul® =0, u® =8, Y (1 -1T,)71,

where S, , = (I = T,) YT, — T,).
We set

k!
o= o<t Pk — D)’
a=[-T)" e, ca=1T=T)" e@my cs=Ikloo(l+ag),
ca =2ci(1+cic3), o5 =14 caaqlkllmo, c6=2c2(1+c2||T —Tnllzicm))s

c7 = 2¢4Cabm || kllom, s = 2¢4c6bm || kllm,m,  c10 = 2¢5a4||k||m,0-
Proposition 1. If k € C™([0,1] x [0,1]), then
[u?D = unllo < es(crero)' | f lmv ™",
[uZHD —unllo < eser(erero)' | f lmy™HFI™.
If k€ C?™([0,1] x [0,1]), then
mk.

=t [l < esegl1f lmp™

In [At97], p. 257, Atkinson gives the computational cost of the quadrature
two-grid method 1: the total cost in operations per iteration is approximately

Q@+ 20000 + 02 = (g0 + @)°.

16.3 A New Two-Grid Method

This method is described in [Ku04]. Let us define the “coarse” approximate
operator by B

TI/ :PuTn+TnPV_PVTnPV7
where P, is a projection into P, a,, the set of piecewise polynomial functions
of degree less than or equal to 7 on the partition A, = (¢;,)i=1,...q, - Kulkarni’s
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'l~L7('LO) = 07 {l’(k) = S;,Vﬂgzk_l) + (I - j:’l’)_lf7

n

where
STW =(I-T,)"Y1, -T,).

In what follows, we take r = m.

We have T}, — T, = (I — P,)T,,(I — P,) so that for any operator norm ||.|,
| T — T || < |(I = P)TW||I(I = P,)]||. As P, is uniformly bounded and ||(1 —
P,)T,,|| tends towards zero because T}, is compact, || T, — T || tends towards
zero. That is an advantage over Nystrom.

As the range of P, belongs to the set of the piecewise continuous functions,
we write |.||z(c) instead of ||.||z(re)-

If P, is the orthogonal projection or the interpolatory projection on P, a,,
we quote the following estimate from Chatelin-Lebbar [ChLe84]: “if C¥ is
the set of piecewise C™-functions, then there is a constant ¢y such that for all
ueCy ,

(I = Pyullo < e u@ o, (16.3)
where 8 = min(m,r +1).”
Proposition 2. If k € C™([0,1] x [0,1]), then

1T = Tollecy < craglkllmolll = Polleeyr™™,

1Tn — TI/”LZ(C’",C) < C%aq”k”mﬁ’/_zm'

Proof. As k€ C™([0,1] x [0,1]), we have T,,(I — P,) € C™][0, 1], so, according
to (16.3),

I = PTu(T — Pyullo < 1 (%) 1Tl = P) ()™ o
Since
To(I = P ()™ (x) = w;n D™ k(z, 25.0) (1 — Py)(u) ().
j=1

it follows that

Tl = P)(@)™ @) < ag| D™ ko max (I~ P,)(w) ()|

Setting

lu—Poullo,a; = max |u(z)—Pou(z)], |u—Pullo=max|u—P,uloa,,
ee[L+ L] J

we obtain

ag|| D™ kloflu — Pyulo;
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hence,
ITa(I = P)™ || zcy < agllD™ k[0l — Pollz(c)-

If u € C™, then, by (16.3), ||(I — P,)ullo < c;v™™|[ul™||o, so,
1 m
(T = P o < 0Dkl (2) ™l
and we arrive at
1 2m
(2= PTAE = P eomcr < gDkl (3)

Proposition 3. Suppose that I —T' is nonsingular. If k € C™([0,1] x [0, 1]),
then for v large enough, I — T, is nonsingular and

I =T) Moy < 2ea
where ¢4 is defined in the previous section.
Proof. We have I — T, = [I — (T, — T,,)(I — Ty,) ][I — T5,]. Since
I~ T~ To) M leey < ITo — Tl 1T~ To) e,

and the right-hand side of the inequality tends to zero as v tends to infinity,
if follows that for v large enough,

3 - 1
(T, = To)I = T0) Moy < 3 < L.

According to Lemma 12.3, p. 198 in [Li06], T — (T, —T,,)(I —T,)~" is invertible
and

= -1 1
(I = (T, = T)(I =T)™") o) < - <2
1— (T, — T)(I — Tn)_lnﬁ(C)

We have
(I —T0) M) < ca

Indeed, I — T, = [I — (T,, — T)(I — T)~Y|[I — T). As

(T —T)YI =T) (T = T)I = T) (o)
<al(Tw = T)lleey + ST = DT |l 2oy (T — T) (e

and in view of the collectively compact convergence of 1), to T, ||(T,, —T)({ —
T)" YT, —T)I —T) | z(c) tends to zero, so, for n large enough,

_ 1
I =T) " zey < 3 < 1.
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By Lemma 12.3, p. 198 in [Li06], I — (T, — T')(I — T)~! is invertible and

1T = (T = 1Y =) ) e
3 L4 (T = T = T) ooy
ST~ DI = 1)1 T~ DY = D) ey
<2e(L+al|Th =Tz e)y)-

Since [T, — 7)) < ITullecey + 1T llecey < IElloo(1 + ag), we now obtain
our estimate. Thus, R
(I =T,) ey < 2ca.

Proposition 4. If k € C™(]0,1] x [0,1]), then, for v large enough,

[Snwlleem.cy < dr™™,  dr = 2¢csciag||km.o,

- 1\
||Sn,1/||,c(C) < dQ,I/ - 5 dQ,V = 2cALCIOJqu:”m,O
14

I=Pzcc)-
Proof. We have

1Snwllzem.cy <1 = T) e (Tn = Tl cem,c)s
1Snllciey <IT =T) e 1(Tn = To)ll 2oy

By Proposition 2,

1Sl com oy < 2eaciag|kllmov ™2™,

15n.0

lzo) < 2cacrag||kllmolll — Pollzoyr™
Proposition 5. If k € C™([0,1] x [0,1]), then
155 llciem ) < drdg, = D™ ke N7

gk _ Gk-13
Proof. As Sy, = S5, S, we have

HS’S,uHﬁ(Cm,C) < ||§§;1||L(C)||gn,u||z:(0m,0),

S0,

”Sn y —(k+1)m.

k—1
Lm0y < drdg v

Theorem 1. If k € C™([0,1] x [0,1]), il is the new two-grid solution, and
Uy, is the Nystrom approximation, then

a5 — wnllo < csdrdgy, | llmp™ 0™,
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Proof. We have
Up = ;,Vun + (I - Tl/)_lf7 '&7(1,6) = S’n,uﬂg‘;_l) + (I - Tl/)_lf;

S0,
Uy, — ) = 8 Sy (U, —alk=1y,

Then R
Up — u%k) = Sz,u(un - ’&7(10)) = Sﬁ,u(‘[ - Tn)_lfa

and we deduce that

Ju—alF o < ||SE, OIT =T lecem.cm)ll flim,

1 (k+1)m
o= a0l < sty (1) 1l

In [Ku04], p. 370, Kulkarni gives the computational cost of this two-grid
projection method: it is, per iteration, approximately

from which,

Gn(qn + 6q,) + 2¢2.

Compared to the first two-grid method, there is an additional cost involved in
generating matrices, but for n > v, the computational costs of both two-grid
methods are comparable.

16.4 Comparison of Error Estimates

The aim of two-grid methods is to provide, at a lower cost, an approximation
whose accuracy is the same as that of the Nystrom approximation.

In this section, we will compare the errors for different assumptions on
the data. u%k) will denote the quadrature two-grid iterate, iy, (k) the Kulkarni
two-grid iterate, u,, the Nystrom approximation, and u the exact solution of
the equation v = Tu + f.

Using the previous notation, we have

[un —ullo < cresegbmllklloml| fllmn™™

o In the case where & € C™ ([0, 1] x [0, 1]), we have

25D — o < cser(erern)’]] fllmp ™ EFD™,
2(6+1)m

1

ey %%<%%dHﬂmC>

The order of accuracy of Kulkarni’s two-grid iteration method is 2(£+1)m,
ce the order he,quadrature iteration methods, which is (£41)m.




180 L. Grammont

Suppose that
v=nf, 0<p<l.

In the quadrature two-grid method, one has to perform at least k* iterations
with k* > 2p~! — 1 to reach the desired accuracy. In the Kulkarni two-grid
method, one has to perform at least k* iterations with k* > p~1 —1 to reach
the desired accuracy.

Theorem 2. Let k € C™([0,1] x [0,1]). If k > 2p~ ! — 1, then

om ) Il

k1
Hu%k) _ u||0 <cs (07(67010)T + ClcquHk

Ifk>1p~! — 1, then
H?[n(k) - UHO <c¢s (d7d§;l + clcquHkHO,m) Hf”mn_m'
e In the case where k € C?™([0,1] x [0, 1]), we have

[0l — |l < c5(cs)¥ || Fllmy ™™,

155 — wnllo < esdrdg, |1 £llmp*+D™,

The order of accuracy of the Kulkarni two-grid iteration method is better than
that of the quadrature two-grid method.

Let us compare the multiplicative factors. Let us define (2t as the
multiplicative factor of the Kulkarni two-grid (2¢€+ 1)th iterate divided by the
multiplicative factor of the quadrature two-grid (2¢4 1)th iterate. In the case
where k£ € C™([0,1] x [0,1]), we have

ot1 ¢ £41 +1
K(25+1) _ (i) < Cq > <aqc%) <||k||m,0> (HI—P H)2€'
b 1+ caaq|[kl[m.o cq 1&llo,m

The first factor tends to zero with ¢, and in most cases the second one
also. The third factor depends on the chosen quadrature and the interpolation
estimation. The fourth one depends on the regularity properties of the kernel,
and the last factor depends on the chosen projection P, .

In the case where k € C?™([0,1] x [0, 1]), we have

w9 = o (LY (2" (2ar)* g pyyiet (elmo )
=) &) e W el )

Here, the last term generally tends to zero with k.
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17.1 Introduction

The physical model of an absorbing scattering medium (ASM) and the corre-
sponding mathematical model of the radiation transfer equation (RTE) were
originally formulated to study dilute dispersed systems like fog [SiHo02]. Such
media contain well-separated small particles (droplets), and so they are es-
sentially heterogeneous. Therefore, even the derivation of the conventional
RTE can be considered as a problem of homogenization. Nevertheless, ho-
mogenization of radiation transfer is often meant as a problem for the con-
ventional RTE with oscillating coefficients [Pa05]. Oscillations with a period
much smaller than the characteristic length scale of the problem can be aver-
aged to obtain the effective coefficients of the homogenized RTE. Thus, from
a physical point of view, a heterogeneous ASM with short-scale variations of
the radiative properties is replaced by an equivalent homogeneous ASM with
the effective radiative properties. Such a homogenization problem contains
two small length scales of different size. The smallest scale is the size of the
scattering inhomogeneity (particle) and the intermediate scale is the period
of oscillations of the radiative properties.

The radiative properties of dilute dispersed media can be obtained from
the scattering properties of a single particle [SiHo02], but considerable dif-
ficulties arise in dense dispersed systems where the volume fraction of the
dispersed phases is comparable with the volume fraction of the matrix. The
distances between the scatterers (particles) become comparable with their
sizes in such systems, so that a mutual influence of the scatterers should be
taken into account. This is referred to as dependent scattering. The current
mathematical approach to dependent scattering is the RTE with modified ra-
diative properties [BaSa00]. However, the applicability of the RTE to dense
dispersed systems has never been rigorously proved.

A model of homogenization relative to the smallest scale of a uniform
monophase domain was recently proposed for two-phase composite
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media [Gu08]. Each phase is considered as an absorbing but not a scatter-
ing medium in this model. The reflection and refraction on the boundaries
between the phases are the only scattering events. This model has no restric-
tions on the phase composition and allows us to derive the conventional RTE
for dilute dispersed systems as well as to describe the effects of dependent
scattering when the volume fractions of the two phases are comparable.

This chapter aims to generalize the previous two-phase model [Gu08] to the
case of an arbitrary number of phases and to analyze the derived equations.

17.2 Multiphase Model

A detailed description of radiation is given by its angular intensity i(r,€2)
[SiHo02] defined at point r in the direction specified by its unit vector €. A
detailed distribution of NV phases in space can be characterized by their phase
functions ¢, (r) [To02] defined for v =0,...,N —1 as

1 in phase 7,
¢7 = {

0 elsewhere.

The detailed radiation intensity i(r, £2) could be calculated by transport equa-
tions
OVi, = —ay iy

in each monophase domain with the absorption coeflicient o, related by the
boundary conditions of reflection/refraction on the phase boundaries.

The structure of a multiphase medium is often characterized by averages
as the volume fractions of phases and the specific surface of phase boundaries
while the detailed phase distribution is unknown. In this case a detailed de-
scription of radiation transfer becomes impossible. Moreover, it will be exces-
sive if the detailed radiation intensity is averaged at a physical measurement.
The first question is: What average value can correctly represent the detailed
radiation intensity in a domain containing a great number of morphological
features (monophase domains)? The average of the intensity i itself is a bad
choice because i can be considerably different even in neighbor monophase do-
mains. The examples are given by an opaque phase with zero intensity and a
transparent phase with nonzero intensity and two transparent phases of differ-
ent refraction indices in thermal equilibrium where the ratio of the intensities
is proportional to the ratio of the refraction indices squared [Gu08].

The most precise homogenized description is supposed to be given by
N values obtained by averaging over each phase within the representative
domain [ZelaTa06, Gu08]. Note that the radiation intensity is defined by the
energy flux through a surface [SiHo02]. Therefore, a representative surface
is proposed rather than a representative volume domain [Gu08]. The partial
averaged radiation intensities I, are defined on the representative surface S
containinggazgreatpnumbersofinterseetions with monophase domains [Gu08]:
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1
I, = Sf.y /z¢7ds

where the volume fraction of phase v can be obtained on the same surface S
with the surface element ds:
1
E / ¢7ds.
S

The energy balance is given by a system of N integro-differential equa-
tions similar to the RTE but containing additional integral terms correspond-
ing to radiation exchange between phases [ZelaTa06, Gu08]. The two-phase
model [GuO08] evaluates the coefficients of these equations based on the as-
sumptions that the medium is statistically isotropic and that consecutive
reflection/refraction events do not correlate. The same assumptions and a
similar derivation procedure applied to a multiphase medium result in the
following energy balance for phase ~:

A, pyAy 1 / ’ ’ /
= - — — [ L,(Q2) Py~ (2, 2)dQ2
QVI, (O"Y+4f7)I'Y+ Af, 4r + () Py, (87, Q)
4
1
+Z Z}’] 7‘54 /L;(n )Py (¥, Q)dY, (17.1)
5 K in

where A,5 = As, is the specific surface of the boundary between phases
and  per unit volume of the multiphase medium,

Ay =" As, (17.2)
)

is the specific surface of phase 7, ps, is the hemispherical reflectivity of the
interface /0 for the incidence from phase §, and

1
Py =75 Z PysAsy (17.3)
A, 5

is the weighted average of the hemispherical reflectivity of the boundary of
phase v for the incidence from this phase. The hemispherical reflectivity is
the optical property of a surface defined in [SiHo02]. Note that generally
p~s 7 psy- The relation
L~ ps 2
i e R,
1- Péy ul
follows from the optical reversibility [SiHo02] where ms, = mgs/m., is the ratio
of refraction indices ms and m., of phases 0 and ~, respectively.
Symmetry relations for the scattering phase functions also follow from the

(17.4)
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Pos(SY, Q) = Py (2, 9). (17.5)

In an isotropic medium scattering phase functions depend on the scattering
angle ¢ between directions  and €'; therefore, the two arguments can be
exchanged:

Py (2, Q) = Pys(¢) = Pys(Q, Q). (17.6)
Equations (17.5) and (17.6) show that the indices and the arguments can
be exchanged in any combination in the isotropic medium. This proves the

symmetry of the scattering matrix. In addition, the conventional normalizing
condition is required:

i/PM(n’,n)dn’ = 1. (17.7)
47
4

The phase functions with v # § describe radiation exchange between
phases v and ¢ by refraction at the interface. These components are eval-
uated as [Gu08]:

1—pls(x)  deos?x

Prs(9) = Doy (¢) = 24— pys deos(x —x')’

(17.8)

where y is the incidence, X’ the refraction, and ¢ = |x — x| the scattering an-
gles, and p; 5(x) is the directional-hemispherical reflectivity for the incidence
from phase v defined in [SiHo02]. The symmetry of the right-hand side (17.8)
against the exchange of the indices follows from the optical reversibility for the
directional-hemispherical reflectivity, ol ;(x) = pj.,(x’), Snell’s law of refrac-
tion, and relation (17.4). The hemispherical and the directional-hemispherical
reflectivities are related as [SiHo02]

1
Pys = 2//}’75()() cos xd cos X. (17.9)
0

The diagonal phase functions P, describe back reflection of radiation by
the boundary of phase 7. They are given by the weighted average

1
Py (¥) = oA, > 00 Asy, (17.10)
5

with the scattering ¢ and incidence y angles related at specular reflection as
1+ 2x = 7. Note that (17.8) and (17.10) satisfy normalizing condition (17.7).
To prove this, one can choose the spherical coordinates with the axis par-
allel to the € direction where the polar angle is the scattering angle ¢ and
d€Y = 27d cos 1 and then apply (17.9) along with definitions (17.2) and (17.3).
Examples of scattering phase functions (17.8) and (17.10) derived from the
Fresnelformulas forsreflectionsandgrefraction are shown in [Gu08].
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17.3 Dilute Dispersed Media

Suppose that the phase denoted by v = 0 (the matrix phase) prevails in
volume:

1 fo <1, (17.11)

and that the grains of the other N — 1 phases (the dispersed phases) do not

touch each other:
A,Y(s:(] if 75#0.

Equation (17.11) implies that the volume fractions of the dispersed phases are
small. Because the volume fraction is in the denominators of the terms of the
right-hand side of (17.1), the left-hand side of this equation for a dispersed
phase can be neglected. This brings system (17.1) to the form

A Ay 1
QVIy = —(ag+ =2)Ip + Poslo g /IO(Q’)POO(Q’,Q)dQ’
47

4 4

N—-1

— (1_p50)A05 1 / / ’ /
+y 4 1 | D) Foo (&', 2)dS,
o=1 4m
A, 1
p74 . A /I‘V(Q/)P’w(ﬂ/,ﬂ)dﬂ/
4

4 A =pm)dye L /Io(ﬂl)Pov(Q,>ﬂ)d9,a y=L N1

0=—(ayfy + ) +

4 4
4

(17.12)

The second equation of system (17.12) is the Fredholm integral equation
relative to I,. It indicates that radiation in dispersed phase v # 0 is locally
consistent with the radiation in the matrix phase. The general solution of this
equation is given through the resolving kernel K., (2, €):

2

() = 220 [ 1 (@) K. (Y. Q)dY 17.1
’Y( )_E 0( )"/( ) ) ) (73)
47

where factor m?yo /4w is separated from the kernel. In a statistically isotropic
medium the kernel depends on the angle between directions €2 and Q' only
and is, therefore, symmetric like the scattering phase functions (17.6). Sub-
stituting (17.13) into the second equation (17.12) gives the following equation
for the kernel:

<1 + 40210”)1(7(9',9) - ZJ /Kw(ﬂ’,Q”)PW(Q”,Q)dQ”
~ ™
i + (1 - p’YO)PO’Y(Qla Q)) (1714)

where relation (17.4) is taken into account. The normalizing condition for K
i i integration djsover (2:
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1 L — pyo
— [ K, (S2,Q)dQ2 = i . 17.15
4T / B ) 1 —py+4doyfy/A, ( )

Note that in case of a transparent dispersed phase with o, = 0, the right-
hand side equals unity because p,o = p, for the considered medium. Thus,
condition (17.15) for the kernel is similar to (17.7) for the scattering phase
function.

Substituting (17.13) into the first equation (17.12) reduces the problem to
a conventional RTE:

AV = (a0 + 50l + / Io(2)Q(S, 2)as?, (17.16)

where the kernel of the integral transform is

R, Q) = pOAOPOO(Q’ Q)

-1
(1 —pos)Aso 1
+ Z p05 60 /K5 Q/ Q”)P50(Q” Q)dﬂ// (17 17)
o=1

17.3.1 Effective Radiative Properties

In the case of dilute dispersed systems, the multiphase model explained above
is rigorously reduced to the conventional model of an absorbing scattering
medium described by RTE (17.16). The effective radiative properties follow
from this equation. The effective extinction coefficient is the absolute value of
the factor before Iy in the first term of the right-hand side:

Be = ag + A /4. (17.18)

The effective scattering coefficient is evaluated from (17.17):

N—-1
1 1 1 — pso + 4posas f5/ Aso
= — Q. 0)dQY == A . 17.19
47T4/Q( ) 4 ; 0T - pso + das f5/Aso ( )

The effective scattering phase function is the normalized kernel (17.17):
P.(Q.Q)=Q(,Q)/o.. (17.20)

In what follows, (17.18)—(17.20) are compared with the known results ob-
tained by ray optics. Equation (17.18) presents extinction as a superposition
of internal absorption in the matrix phase and shadowing by dispersed parti-
cles. The second term responsible for the shadowing is rigorous for randomly
oriented particles of arbitrary convex shape [SiHo02]. The effective scatter-
mg is glven by (17.19) as the result of independent scattering by the dis-

he in ansparent phase § with oy = 0 equals Asq/4.
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The input of an opaque phase with a5 — 0o equals posAso/4. These limits
are rigorous for randomly oriented convex particles in the framework of ray
optics [SiHo02, Gu08]. The intermediate case of semi-transparent spherical
particles was studied in [Gu08] where differences in the effective scattering
coefficient between the multiphase model and ray optics were found.

The effective scattering phase function (17.20) was validated by compari-
son with ray tracing for transparent spheres of the dispersed phase in trans-
parent matrix [Gu08]. The multiphase model was found to smooth the angular
distribution of the scattered radiation. The revealed discrepancies in the ef-
fective scattering coefficient and phase function were explained by strong cor-
relations between the consecutive reflection/refraction events in transparent
spheres neglected by the multiphase model [Gu08]. The mentioned correla-
tions are less important for dispersed particles of irregular shape where the
discrepancies are expected to decrease.

17.3.2 Opaque Dispersed Phases

The size of a dispersed particle is estimated as the ratio of its volume to the
surface, f,/A,. Phase « is referred to as the opaque phase if the size of its
particles is much greater than the absorption length 1/cv,:

ay fry Ay > 1. (17.21)

Let first N, dispersed phases satisfy condition (17.21). According to the
second equation of (17.12), I, = 0 for these phases. This means that radiation
does not penetrate into opaque particles. This does not change the effective
extinction coefficient (17.18) and simplifies the terms responsible for scattering
by opaque phases in equations (17.19) and (17.17):

N, N-1
1 e 1 1 — pso + 4posas f5/Aso
_1 A L A 17.22
Te =7 Zp05 0+ ] 5_%:“ 07T — pso + dasfs/As ( )
—'p
N-1
1 T
pr Aao +1 Z P05 ( 5 ) Aso
§=Np+1

(1~ Poo‘)Ao‘oi [ mats 2P a0, (7.2

The first terms on the right-hand sides of (17.22) and (17.23) give exactly the
same contribution of opaque particles to the effective scattering coefficient
and phase function as evaluated by ray optics [SiHo02].

17.4 Dense Dispersed Media with Opaque Particles

Let radiation be transferred in a continuous transparent or partially absorbing
matrixsdenotedsbysindexsges=y0filledswith opaque inclusions of phases 1, ..., N—
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1 satisfying condition (17.21). The total volume fraction of the inclusions can
be considerable, so that condition (17.11) is not required. The absorption
term —ov, [, dominates the right-hand side of (17.1) for an opaque phase.
Thus, I, =0 for y=0,...,N — 1. Equation (17.1) for the matrix becomes

_ Ao
QViy = —(OZ() + 4_f0)IO +

podo 1 /IO(Q’)POO(Q’,Q)dQ’. (17.24)
4fo 4m

47

Thus, the problem is again reduced to the conventional RTE (17.24) with
the effective extinction and scattering coefficients

Ao 1 Nl
B. = a — =« — A 17.25
Pe nzo—i-4f0 (yo+4f0; ~05 ( )
N-1
poAo 1
O = = — Po~ A0, 17.26
e 4f0 4f0 ‘; 0y <41~0 ( )

respectively, and the scattering phase function
Nl
P.(Q, Q) = Pyo(,Q) = v > porAso (17.27)
y=1

According to (17.25)—-(17.27) each opaque phase contributes proportionally to
its specific surface. Similar equations were obtained in [GuKr05] by physical
reasoning and validated by Monte Carlo ray tracing simulation.

17.4.1 Dependent Scattering

The obtained radiative properties are generally in line with the theory of
independent scattering [SiHo02]. The only difference is the factor of

9=1/fo (17.28)

before sums in (17.25) and (17.26). The physical meaning is that specific
surfaces A,y and Ay should be referred not to the total volume of the media
but to the volume occupied by the matrix phase. This seems to be natural
because the radiation is transferred in the matrix only and does not penetrate
into the opaque phases.

Factor (17.28) takes into account dependent scattering in the considered
medium. It was initially introduced as the result of the analysis of Monte
Carlo ray tracing simulation [SiKa92] and referred to as the scaling factor. The
points in Figure 17.1(a) show the values of ¢ given by numerical experiments
in the cited work while the line is the analytical formula (17.28) resulting
from the general multiphase model. The model agrees with the simulation and
confirms thatstheprincipaleffectyissthat the radiation does not penetrate into
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Fig. 17.1. Dependent scattering for opaque (a) and semi-transparent (b) spheres of
diameter D in transparent matrix. The multiphase model (curves) and the Monte
Carlo simulation (points [SiKa92]): (a), scaling factor g versus the volume fraction
of the matrix phase fo; (b), hemispherical transmittance versus the thickness L.

opaque phases. The theory is corrected for dependent scattering, so that the
effective extinction and scattering coefficients are proportional to the scaling
factor (17.28) and the effective scattering phase function does not change. The
scaling factor is a strong function of the volume fraction of the matrix but is
independent of the reflectivities of the opaque phases.

17.5 Dependent Scattering by (Semi)transparent
Inclusions in a (Semi)transparent Matrix

In the general case when the matrix does not dominate in volume and the
inclusions are not opaque, the full system of N equations (17.1) should be ap-
plied. Figure 17.1(b) compares the numerical solution of this system [Gu0§]
with the Monte Carlo simulation [SiKa92] for semi-transparent spheres of
phase 1 of diameter D in transparent matrix 0. The hemispherical transmit-
tance of a layer of this medium is plotted against its thickness L. A good
agreement of the multiphase model with the Monte Carlo simulation is at-
tained at the absorption parameters a; D of 0.8 and 2 while the multiphase
model underestimates the hemispherical transmittance at ay D = 0.2. The
probable reason for this discrepancy could be the simplified boundary condi-
tions used for the numerical solution of (17.1) [Gu08].
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17.6 Conclusion

The multiphase model of radiation transfer (17.1) generalizes the equations
obtained for a two-phase heterogeneous medium in [Gu08]. In the case of dilute
dispersed systems, the multiphase model reduces to the conventional RTE. In
the case of dense dispersed systems formed by opaque inclusions in a semi-
transparent or transparent matrix, the multiphase model also reduces to the
conventional RTE. It evaluates the effective radiative properties describing the
dependent scattering. In the general case of transparent or semi-transparent
inclusions in a transparent or semi-transparent matrix, the numerical solution
of the model equations can explain the dependent scattering effects.
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18.1 Introduction

The medical condition syringomyelia is characterized by the formation of large
fluid-filled cavities in the spinal cord (called syrinxes in the medical literature).
The exact mechanism by which these cavities form is not fully understood,
although it has been theorized that changes in the pressure of the fluid sur-
rounding the spinal cord could be responsible. There have been some studies
carried out for the pressure levels in the cerebrospinal fluid [BW81], but none
of these is over the time scales that are necessary to verify that the pres-
sure changes are the cause of syringomyelia. Generally, detailed experimental
data is needed over a period of months or even years in order to verify this
hypothesis.

The alternative is to develop a mathematical model of the spinal cord and
the surrounding liquid. A number of mathematical models of the spinal cord
have been developed by applying various analytical and numerical methods
to simulate the motion of the spinal cord and the surrounding liquid [CDBO05,
LEBO06].

A more complete simulation of the whole cord was developed by Harris
and Hardwidge [PJHO7] by using a simple finite element model of the spinal
cord based on the assumption that the cord had either linearly elastic or
viscoelastic properties. However, this model did not take the permeable nature
of the spinal cord into account, and so the internal loading of the pressure of
the liquid inside the cord was missing. Further, as the cord was not permeable,
it was not possible to include any changes to the pressure of the liquid in the
central cavity or the consequential effects that such pressure changes would
have had on the motion of the cord.

A more appropriate method is to treat the spinal cord as a porous medium
saturated with the surrounding spinal fluid. This can be achieved by adapt-
ing existing mathematical models of porous media, developed in other areas
of science and engineering (most notably soil mechanics) [RWL9S8], for use
withgbiologicalrandsmedicalsapplications. The usual differential equations for
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the deformations of an elastic medium are modified to include a load term
due to the pressure of the liquid inside the pores, and supplemented with an
additional differential equation which can be solved for the pressure of this
liquid. The resulting system of coupled partial differential equations can then
be solved numerically using the finite element method.

18.2 Mathematical Model

Consider a liquid saturated porous medium, and let n denote the fluid-filled
void fraction of the medium. Then the mass balance equation for the liquid
phase is

0
5 el + V- [nprvi] = 6, (18.1)

where p; is the density of the liquid and v; is the velocity of the liquid phase.
Assuming that the volume fraction of the liquid phase is constant, the liquid
density does not vary in space, and the effects of the motion of the solid
phase on the liquid phase can be neglected, then Darcy’s law can be used to
rewrite (18.1) as

o

ot
where p is the excess pressure in the liquid phase, « is the permeability, and v,
is the viscosity of the liquid. If the excess pressure and the density are related
by an equation of the form

+ %V - (—KVp) = 0, (18.2)
1

h
p=_ (o1 = po)

where pg is the density of the liquid phase when it is at rest and & is the bulk
modulus of the liquid, then (18.2) leads to the linear diffusion equation

Ip

2
£ \v4 18.
ot b, (18.3)

where the diffusion constant u is given by

hx
p=—.

14
Now consider the stress in the porous medium. Using the same notation as
is frequently used with the finite element method for stress analysis, we let o
denote the vector of the nonzero components of the symmetric stress tensor.
This can be expressed as a linear combination of the contributions o; and oy
from the liquid and solid phases, respectively, in the form

oc=(1-n)os+ noy.
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Assuming that the liquid phase is inviscid, the stress in the liquid phase is
related to the pressure by
o = —mp,

where, for an axisymmetric problem, m = [1,1,1,0]%. In the solid phase the
usual linear stress—strain and strain—displacement relationships can be used
to give the total stress as

o= (1—n)DBu+ nmp,

where D is the stress—strain matrix and B the strain—displacement matrix, as
given in [OCZ91]. Assuming that there are no body forces acting on the solid
phase, the equation of motion for the solid phase can be expressed as

0%u ou
=V =[(1-n)ps + np 2 +/’LSE7
where pg is the density of the solid phase and pus is the damping coefficient
for the solid phase.
Applying the finite element method to equations (18.3) and (18.4) yields
the coupled matrix system of equations

(18.4)

Mi+Ca+ (1 —n)Ku=[(1-n)L+nQ) po+ nQp,

) ) (18.5)
Sp — Hp = —Sopo + Hopo,

where M, C, and K are the mass, damping, and stiffness matrices given by
M=1[1-n)ps -I-npl]/ NTN dv,
v
C= ,us/ NTN dv,
1%
K = / BT DB dv,
1%

respectively. The matrix N is the usual matrix constructed from the finite
element basis functions {¢;} (see [OCZ91] for further details). The fluid phase
finite element matrices S and H are given by

%z/@@w
\%

Hij = ,u/ ngl . V¢J dv.
\4

The coupling matrices Q and L can be expressed as block matrices, where
each appropriately sized block is given by
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and
Lij:/@ndS,
S

respectively. Here S denotes the part of the surface of the porous medium
where the pressure is known, and n is the unit normal vector to S directed
into the porous medium. The subscript 0 is used to denote quantities that are
at nodes where the pressure is known or is given by the boundary conditions.

The coupled finite element equations given by (18.5) can be expressed as

M 0 0 v -C —(1-n)K nQ v
0 I O u = I 0 0 u
00 S5 ||p 0 0 H p
(1 —=n)L + nQo] Po
+ 0 , (18.6)
Hopo — Sopo

where v = 0. Clearly, (18.6) forms a linear system of coupled differential
equations in time which can be written in the form

Aoy = Aly + f, (187)
where
M 0 0 —-C —(1-nK nQ
Ag=| 0 1 o, a4=| I 0 0 |,

0 0 S 0 0 H

v [(1—=n)L+nQo] po
y=|u/|, f= 0

p Hopo — Sopo

The system (18.7) can be integrated through time analytically. However, this
is computationally expensive as it requires us to calculate all the eigenvalues
and eigenvectors of the generalized eigenvalue problem Agy = AA;y. In ad-
dition, we would also be required to calculate integrals involving exponential
functions of the eigenvalues multiplied by the terms in the vector f, which
may only be possible with the use of numerical methods.

The alternative is to use a numerical method to integrate the system (18.7)
through time. The method used here is based on the trapezium method. Let
y; denote the solution to (18.7) at the jth time step, and let dt denote the
length of the time step. Then, at the time halfway between time steps j and
7+ 1, we have N

Y1 Y o YL TY
Y 7 0 YT
Substituting (18.8) into (18.7) and rearranging gives

(18.8)

1o + 5tA1) y;i+ 25tfj+1/2, (189)
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which can be solved for y; 1. Note that the notation f;, /5 is used to denote
that f should be evaluated at the time halfway between the jth and (5 + 1)th
time steps. Since yg can be found from the initial conditions and f;;/, can
be calculated from the boundary conditions, it is possible to use (18.9) to
numerically integrate the system through time and calculate the approximate
solution at a later time step.

For a solid cord, we can show that this method is stable by showing that
the eigenvalues of the iteration matrix are always less than or equal to one in
magnitude. Rewrite the system of equations (18.9) as

st N\ 5t .
Yi+1 = I— EAO Al I+ EAO Al Y +AO fj+1/2 .

If \ is an eigenvalue of Ayt A}, then

1+ %A
ot
1—2E)

(18.10)

is an eigenvalue of the trapezium rule iteration matrix. It can be shown that
the eigenvalues of Ay LA, are either

—ps £/ 2 — 4w?
2 )

where w is a natural frequency of the structural phase, or an eigenvalue of
the diffusion equation of the liquid phase (which are all real and negative or
zero). In either case, the real part of each eigenvalue is either zero or negative,
and so the magnitude of the numerator in (18.10) is less than or equal to
the magnitude of the denominator. Hence, all the eigenvalues of the iteration
matrix are less than or equal to one in magnitude, and the above trapezium
method is stable.

18.3 Numerical Results

The results presented here are for a section of the spinal cord 5cm long and
of radius 0.5cm. An axisymmetric finite element model is used to reduce the
size of the computational model. The two cases being considered are for a
solid section of cord, and a section of cord with an elliptical-shaped cavity in
the centre which has vertical axis of length 2cm and horizontal axis of length
0.2cm. In each case two meshes (coarse and fine) of quadratically curved tri-
angular elements [OCZ91] will be used in the calculations. The coarse meshes
have 500 solid phase elements and 1111 nodes; and the fine meshes have 2000
solid phase elements and 4221 nodes. For the solid cord, the nodes are equally
spaced both horizontally and vertically, but for the cord with the cavity, the
meshyisygradedssosthatytherejaresmaller elements close to the top and bottom
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of the cavity to take into account the known problems with computing the
stresses at such points.

The material parameters of the model were chosen as follows. A value of
10°Nm? is used for Young’s modulus as this is the value determined experi-
mentally by Bilston and Thibault [LEB96]. Poisson’s ratio is set to 0.49 as the
cord is thought to be almost incompressible, and the density is taken to be
1100kgm73, slightly denser than water. The cerebrospinal fluid is assumed to
be essentially water with density 1000kgm ~>. The void fraction is set to 0.18,
and a range of different values are used for the diffusion parameter p in (18.3).
The different values of the diffusion parameter correspond to different values
of the permeability of the spinal cord. The exterior pressure loading applied
to the outside of the cord is constant in space, and its temporal variation is
shown in Figure 18.1.

Pressure (N/m”"2)
40000

30000
20000

10000

0
0 2 4 6
Time (s)

Fig. 18.1. The pressure loading applied to the outer surfaces of the spinal cord.

The main results presented here will be for computing the mean stress at
a point of interest inside the spinal cord. The mean stress is simply the mean
of the three components of the normal stress, and it can be shown that this is
a stress invariant. That is, the mean stress does not depend on the coordinate
system being used, or on the orientation of that system.

Figure 18.2 shows the results of computing the mean stress in the solid
phase at the centre of the solid cord with p = 5 x 106 using both the coarse
500 element mesh and the fine 2000 element mesh. In this case the two curves
on the graph are superimposed, indicating that the two meshes are giving
almost identical results. The corresponding results for a cord with a cavity,
where the mean stress has been calculated at one end of the cavity, are given
in Figure 18.3. The results given in these figures show that the finite element
method is yielding accurate results for this problem, since refining the mesh
and time steps does not significantly change the calculated stress. Therefore,
all the remaining calculations will only be carried out using the meshes with
2000 elements.
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Fig. 18.2. A comparison of the calculated mean stress at the centre of the solid
cord using both the 500 and 2000 element meshes.
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Fig. 18.3. A comparison of the calculated mean stress at one end of the cavity in
the cord using both the 500 and 2000 element meshes.

Figure 18.4 shows the pressure in the liquid phase (top) and mean stress in
the solid phase (bottom) for four different values of the diffusion parameter p.
As can be seen, if the diffusion constant is relatively large (5 x 1075), then the
pressure changes travel through the cord almost instantaneously, whereas if
the diffusion constant is relatively small (10~°), then the peak pressure in the
liquid phase is smaller than the peak applied pressure. This has a significant
effect on the peak tensile stress. These results show that the tensile stress is
maximized for the values of the diffusion constant such that the pressure in
the liquid phase reaches its maximum value at the center of the cord just as
the external pressure loading is removed. Figure 18.5 shows the corresponding
results for the cord with a cavity, where the mean stress has been calculated
at one end of the cavity, and we note that the peak tensile stress is much
greater in this case.
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Fig. 18.4. A comparison of the calculated pressure in the liquid phase (top) and
mean stress in the solid phase (bottom) at the centre of a solid cord for different
values of the liquid phase diffusion parameter.
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Fig. 18.5. A comparison of the calculated pressure in the liquid phase (top) and
mean stress in the solid phase (bottom) at the bottom of the cavity for different
values of the liquid phase diffusion parameter.

18.4 Conclusions

These results show that the finite element method can be used to accurately
model the deformations of the spinal cord. Clearly, the value of the diffu-
sion parameter W appearlng in (18.3) plays an important role in determining

----- ols how fast the external liquid pressure
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changes are transmitted through the liquid phase of the cord and hence has
effect on the mean stress in the centre of the cord. However, currently there
is no information on what is an appropriate value for the diffusion parameter,
and some further experimental work is needed to resolve this issue.

The higher mean stresses obtained in the case where the cord already has
a cavity shows that once the cavities have formed in a patient they are likely
to get bigger, and this has been observed in real patients.

The results presented in this chapter demonstrate that the hypothesis that
syringomyelia is caused by physical fluid mechanics processes in the spine is
credible. Further work is needed to modify the model to be able to simulate
the actual formation and growth of the cavities in the spinal cord.
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19.1 Motivation

Consider a flat smooth manifold I',, € R? of codimension one with Lipschitz
boundary 017, and large aspect ratios such as the one depicted in Figure 19.1.
Let the associated unbounded domain §2 := R3 \ I}, be isotropic and homo-
geneous for the moment. We seek solutions u € H} (£2) of the Laplace and
Helmholtz equations when a Dirichlet condition gp is applied on I3, such that

Thu Tw 75““11” = gp € H'*(I),

where ’y% are the Dirichlet trace operators from either side of I%,. If [-],
denotes the jump across I, clearly [ypu] r, = 0. Thus, solutions over {2 can

be built [Mc00] via the single-layer potential W%, | i.c.,
u(x) = @ (vulp, ) (x)  for x € £, (19.1)

where

()00 1= [ Gux—y)oly)dy  for x € 0.
Fm
~vn is the Neumann trace operator, and the integral kernel Gy, takes the form

1 exp (ik|z|)
47 |z|

Gi(z) = for k € R, (19.2)

being the associated fundamental solution of the differential equation.

Thus, we reduce the problem to that of finding the Neumann trace jump
in (19.1), henceforth denoted o := [ynu]j, , and which must lie in H=Y2(I,)
by regularity of solutions over (2. Upon taking the Dirichlet trace over I3,,
one obtains a Fredholm integral equation of the first kind:

—Vas(o)()m=ngp (x) for x € I}, (19.3)
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Xy

Fig. 19.1. Model geometry schematics and coordinates definition. Notice that I,
may not necessarily be connected. Furthermore, we assume [ > w.

where

V@) () = 7p oy (9) (x) = / Gulx—y)p(y)dy.  (19.4)

m

This situation can be encountered under the categories of screen, crack,
or interface—when the surface containing I, lies between two different
materials—problems for which solutions are known to possess singular behav-
iors (see [St87], [NiSa94], [CoDa02], and [Gr85]). Although several methods
have been successfully proposed to handle such singularities, in our case the
very elongated form of I, renders them impractical. We overcome this by de-
veloping an augmented bases approach that takes into account the adequate
boundary singularity. More precisely:

1. At edges, the boundary integral operator is turned into a compactly per-
turbed logarithmic singular integral operator for the transverse edge co-
ordinate. We recall that weighted first-kind Chebyshev polynomials are
shown to constitute an optimal discretization base.

2. At corners, the problem is reminiscent of that of finding the charge sin-
gularity of perfect conductor sectors [Ke99], [MoLe76]. In our case, we
use first-order polynomials over anisotropically graded meshes that follow
singular coefficients.

This scheme was already presented in [JLNLOS8], and it is the purpose here to
provide a mathematical framework for its analysis.
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19.2 Integral Operators with Logarithmic Kernels in R?

Let us first focus on the line segment I}, = (a,b) x {0} € R? with bounded
a,b € R. The associated Laplacian and Helmholtz Green’s function becomes

ngl) (klz))  for k # 0,
Gi(z) = 1 (19.5)
f%log|z| for k=0,

where H(()l) is the Hankel function of the first kind and which behaves as Gg
for small arguments. Hence, the boundary integral operator (19.4) in R? can
be written as V', = L 4+ K where, in view of I},

I 1
L(p)(r1,0) := %/ logmgo(yl)dyl for z;1 € (a,b) (19.6)

and K, is compact or null for k zero [SSCO00].

Proposition 1. The operator L : H-Y/2(I,,) — HY2(I},) is a bounded
Fredholm operator of index zero and the Garding-type inequality

(L + K)o, <P)L2(Fm) 2 'Y”‘PHH-l&(Fm) (19.7)

holds. Moreover, if o denotes the distance towards the endpoints of I}, the
solutions ¢ of (19.3) behave as O (o~1/2).

Remark 1. If I, is in fact a Jordan curve, then a suitable parametrization
can render a logarithmic integral operator plus compact perturbations and
the above results still hold with different .

If we define
Hy 2(In) = {f € HYA(T) < (f, 1) = 0},

1/2 _ 1/2 ) f(t) dt _
HY(L,) {feH (Fm)./Fm G 0},

o
Proposition 2. Operator L is bijective between I?()_l/z(Fm) and Hiﬂ(Fm).

a refinement of the above is stated as follows.

19.2.1 Logarithmic Operators in Weighted L2-Spaces

Let T,,(¢) and U, (¢) denote the Chebyshev polynomials of first and second
kinds, respectively, defined by the relations

_ sin(n+1)0

- with ¢ = cosé@
sin 6
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with real values over [—1, 1]. For the same interval, we define the weight func-
tion w(¢) := (1 — ¢2)'/2. Then, the T}, are orthogonal with respect to w™':

1 0 n # m,
/ To(Q) Tn(Qw ™ (Q)d¢ = Sm/2 n =m # 0, (19.8)
- s n =m = 0,
while the U, satisfy
1
0 n # m,
LA {W/Q T, (199
On the other hand, we introduce the weighted Hilbert spaces
1
B = {7510 = [ 17OF w7 0)dc < o).
1
o= {7 = [ O wiod < oo
-1
wo={rifer,  feri},
endowed with the obvious scalar products to induce the norms |[-[[,, . [-[l;,,

and |-/, this last being the associated graph norm.

Proposition 3. Let Wy := wy and W'y = wl¢. Then we have the

isometries
WL — I3, W':Lj, — L, (19.10)

and there is a continuous inclusion L%/w c L.

Proposition 4. For a given ( € [—1,1], the logarithmic kernel admits the
Chebyshev polynomial expansion

og = o2+ Y SLOT) vae Ll (o)

n=1
. . 2
as a function in Ll/w.

Now, without loss of generality (see Remark 1), consider the endpoints of I,
to lie at +1. Then, one can define the modified logarithmic integral operator
Ly, =LoW™' ie.,

2

Liw(@)©) = 5 [ tosi— 2y or ¢ e (L),

g
-1 IC—nl /1T =02
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Proposition 5. The operator Ly, : Lf Jw = W is bounded and continuously
invertible. If f € W, the unique solution of the integral equation with purely

logarithmic kernel normalized on the interval [—1,1] is given by

Jo
log

2T0(a7) + 2 i nfnTn(z), (19.12)

n=1

p(r) =
where the coefficients f, are given by

2
fn = ;(f7Tn)]_/w7 n < NO'
By using these two last propositions, we can easily derive the following result.

Corollary 1. The original logarithmic singular operator L : L2 — W is
bounded and continuously invertible, i.e., it is a zero-index Fredholm operator.

19.2.2 An Adapted Spectral Boundary Element Method

In what follows, we link the results over Sobolev and weighted spaces. Con-
struct the approximation spaces:

N
n=1"

Qn(Im) = span{w,,' ()T, (tm)} (19.13)

where, for ¢ € [a,b], we have defined

2(t —t5 b

and wp,(t) := y/(b—t)(t — a). In the case a = —1, b = 1, this space belongs
to L2 by Proposition 3. The idea is to describe ¢ through the truncated
expansion

N
en(t) = Z Pn w_l(t) T (2). (19.14)
n=0
We now show that Qu(I,) satisfies the approximation property over the
associated Sobolev space.

Lemma 1. The following properties hold:

1. The space Qn () is a closed subspace of EI‘I/Q(Fm);
2. Quo(In) = limy s oo Qn (D) is dense in H='Y/2(T,).

Proposition 6. Let gp € HY? (). With the Galerkin variational formula-
tion for on € Qn(Im),

Vv € Qn(Im), (19.15)
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Fig. 19.2. Edge geometry (left) and cylinder geometry (right).

the following stability condition and error bound hold:

||90N||ﬁ—1/2(pm) < CHgD”Hiﬂ(Fm)’

_ ~ < i _ ~ .
||SO QDN”HO 1/2(Fm) > C’le Gl(élff(l—'m)ncp QpNHHO 1/2(Fm)
Remark 2. Extension to compactly perturbed operators is achieved by Fred-
holmness. Thus, if besides the principal logarithmic term, continuous func-
tions are introduced in the kernel, the solution scheme remains stable. This
will prove to be the case in the upcoming applications.

19.3 Localization of Single-Layer Operators in R3

Before considering our initial problem (Section 19.1), we study two geomet-
ric configurations in R? (Figure 19.2) for which the solution scheme requires
the solution of logarithmic integral equations with continuous perturbations.
Thus, sets of weighted Chebyshev polynomials of the first kind Qu can provide
suitable approximation spaces.

19.3.1 Flat Edge Problem

Let us consider an infinitely long, perfectly conducting strip with zero thick-
ness and finite width inside an isotropic material in R3. Without loss of gen-
erality, we define the metallized domain

I, = (-1,1) x R x {0}.
From (19.4) and (19.2), we can also write V, = T + K}, where

1 1
1 1 — etklx =yl

o(y)dy, (19.16Db)

X — ]
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for x € I,. The integral kernel in T is singular while the one in C, is contin-
uous for all x and y. However, the domain is unbounded and, consequently,
compactness arguments do not hold for the latter operators as in R2.

Proposition 7. Let gp € HY?(I,,) and consider the boundary integral equa-
tion
T(0)(x) = gp(x), x € Iy, (19.17)

Then the partial Fourier transform of the density o along the edge direction
To 1s obtained as the solution of the logarithmic singular integral equation

%/_1Ko(|(ﬂ?1 — )Ny, &) dyr = G(w1,€) Vay € [-1,1],  (19.18)

where Ky is the modified Bessel function of the second kind.

Proof. We start from the integral equation (19.16a). We take the partial
Fourier transform along the edge axis, i.e., xo. This yields

o2

e m T oY1,y Y dy = gz ,& s
4 \/2 r R \/( 1 _y1)2 <.’172 y2)2 ( 1 2) T20Y14Y2 ( 1 )

where we have interchanged integrals formally. Now, applying the variable
change (1 — y1)( = z3 — y3 and the identity [GrRy94]

B 1 er#¢ dc
21 Je 1+ (2

we finally obtain (19.18). Now, for a small argument, Ky behaves as a log-
arithm while for large real z, it decreases exponentially. Thus, the integral
operator is Fredholm as the kernel is continuous, weakly singular at the log-
arithm and exponentially decreasing along the unbounded direction.

Ko(z)

Remark 3. Thus, we can take the variational form using Qn([—1,1]) as in
Proposition 6 to solve equation (19.18).

19.3.2 Bounded Cylindrical Screen

Consider the following cylindrical screen of radius pg > 0, centered at the
origin in an isotropic three-dimensional space:

L, = {XER3 D \/x3 4+ 2% = po ., |ws] <1}.

We introduce cylindrical coordinates (p, ¢, z3) such that
Ty = pcosy, xo = psingp, T3 = x3,

and r3 € R.
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Proposition 8. The solution of (19.17) is given by the Fourier expansion in
the angular variable

oly) = \/% Zezam(l)o,%)e_lm(p, (19.19)

where each coefficient o (po,ys) is the solution of the logarithmic singular
integral equation

O Qe (5[] 1) o) i = il
200 )1 Im|-1/2 { 5 m\P0,Y3) Y3 Im\pP0o,T3),

Po

where gm(po, x3) is the m-angular Fourier coefficient of gp and Q,, denotes
the Legendre function of second kind [AbSt72].

When the argument is close to one, @, non-integer index v has a logarith-
mic singularity. In our case, for y3 — x3, the argument in Q,,|_;/, becomes

1 Is—yz’,r J2 5
R +1|=1log—"— 4 Clp + O((z5 — :
Qmj-1/2 (2{ o 8 2 —gal T (x5 —y3)*)

where C),, is a bounded constant depending on |m|. Since @, is continuous
elsewhere [AbSt72] and the integration domain [—1,1] is bounded, we con-
clude that the coefficients o, (po,ys) are solutions of compactly perturbed
logarithmic integral equations depending on m and g,,.

Remark 4. Notice the logarithmic singular behavior as pg goes to zero. This
is consistent with the knowledge that for filaments the solutions are singular
as a logarithm along the radial direction.

19.4 Hybrid Element Description

We finally analyze surfaces possessing corners. Consider a domain similar to
the infinite strip but with bounded length [ along x5 (Figure 19.3.) More
precisely,

Ly, = <_17 1) X (_1/231/2) X {O}a
with [ > 2. Let d satisfy 0 < d < 1/2, and introduce subdomains

ré .= (-1,1) x (—d/2,d/2) x {0} € I},

and I'f := I, \ I'%. Define the cut-off function x4 € C>®(I',,) equal to one
inside I', and zero elsewhere. We introduce the notation

o4 := xqo and oy = (1 —xq)o (19.20)
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Fig. 19.3. Rectangle geometry and localization.

for the solution ¢ € H~/2(I,) of the boundary integral equation (19.3).
Thus, the following system is built:

((1 fdngk (1 fd;;fw) <Zi> - ((1 fdfsgD) (19.21)

Let o be the distance function to 9I;,. It is well known that, away from
corners, solutions behave as o~ '/2, while near them the singular behavior
depends on the corner angle v in a nonexplicit fashion. In I 7‘,11 one can describe
the function as tensor product o4 = 01,403 q so that

T(oa)(z1,23) = Ry(03,4)(x3)L(01,a)(71) + Ki(oa)(z1,23),

where L is the logarithmic operator along z; and Ry, K are compact oper-
ators. Thus, from a numerical point of view, a tensor product of weighted
Chebyshev polynomials along x; and regular polynomials along xj3, i.e.,
oM € Qn([-1,1]) ® Pas([—d/2,d/2]), can correctly describe o4 but not oy.
For the latter, we implement a triangular mesh 7;Lf of I'}, where an anisotropic
refinement is carried out towards the boundaries according to the singularity
order.

The associated variational formulation consists in finding Uév M and 05% in
the corresponding approximation spaces such that

(28w a2 (5)- () - (00 5))

for all ¢}y € Qu([~1,1]) @ Pas([~d/2.d/2]) and &, € Po(T;)).

19.5 Final Remarks

We have shown the appearance of a boundary operator with logarithmic sin-
gularitie h problems in R? and especially in R? when
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objects are very elongated. We have proposed a scheme for the numerical ap-
proximation of Neumann jumps required to recover the entire solution using
the single layer potential. This requires further study, as questions such as the
precise functional space characterization of tensor schemes or the stability and
error analysis remain open.
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20.1 Introduction

In this chapter we discuss the boundary integral solution of the fractional
diffusion equation

Ofd— AP =0, in Qpr = 2 x(0,T),
b=g, onXp=1x(0,T), (20.1)
&(x,0) =0, z € (2,

where 2 C R" is a smooth, bounded domain and 9J;* is the Caputo time
derivative of the fractional order 0 < o < 1. For o = 1 we get the ordinary
diffusion equation and for o = 0 we have the Helmholtz equation.

We present the fundamental solution by means of the Fox H-functions, and
represent the solution of (1) as a single-layer potential. By the jump relations
of the potential we derive the appropriate boundary integral operator. We give
detailed mapping properties of the single-layer operator in anisotropic Sobolev
spaces, which yields the unique solution of the boundary integral equation and
thus the unique solution of the initial boundary value problem.

20.2 Function Spaces

Let r,s > 0. The anisotropic Sobolev space H™*(R"™ x R) consists of those
distributions u € S’(R"*!) for which the norm

(NI

+

fullaee = @m % ([ 10+ 16+ (0 ) Yate ) Pacan )

is finite. The spaces H™*(Qr) are defined by restrictions of elements in
H™*(R™ x R) to @Qr equipped with the norm
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[ullr s = nf{|U s+ w=Ulgy}-

Furthermore, the space Hy*(Qr) is defined as the closure of C§°(Qr) in
H™*(Qr) and H™"~*(Qr) is defined by duality H~"~*(Qr) = (Hy*(Qr))".
For r,s > 0 the space H™*(I" x R) is defined by

H"*(I' xR) = L*(R; H"(I")) N H"(R; L*(I")),
with the norm

||U|\%1ns(r><R) = ||u||2L2(]R;HT(F)) + ”'U’H%IS(]R;LZ(F))'

The spaces H™*(X7) and H ™"~ *(X7) are defined analogously with H™*(Qr)
and H™"7%(Qr).

In what follows, we need the anisotropic Sobolev space H ™8 (R™xR), which
takes the vanishing initial condition at ¢ = 0 into account and is defined by

H™*(R" x R) = {u € H"*(R" x R) : supp(u) C R™ x [0, 00| }.

For a finite time interval, we write R := R™ x (0,T) for T > 0 and define
the space

H™* (R = {u = Ulgnx(—oor : U € H"*(R" x R)},
equipped with the norm
||u||7‘,S;T =inf{[|U|grs: u= U|]R"><(—oo,T)}'

The spaces H "$(Xp) are defined analogously.

20.3 Boundary Integral Formulation of the Problem

20.3.1 The Fundamental Solution

In order to formulate the boundary integral equation corresponding to (20.1),
we need to calculate the fundamental solution E(x,t). It is constructed by
taking the Laplace transform of the time variable and the Fourier transform
of the spatial variable in the fractional diffusion equation

(0F — A)E(x,t) = §(x, t),

where 0(z, t) is the Dirac delta distribution. The transformed equation is then

(€ + ) E(E,5) = 1,
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u(g,t) = / e @8y (z, t)da

and the Laplace transform by

'E(x,s):/ e Sty (e, t)dt.
0

Hence, the Fourier—Laplace transform of the fundamental solution is

1

E(¢,s) = P+

(20.2)

By taking the inverse Laplace and Fourier transforms, we notice that the
fundamental solution is

—n/24a—1|,.—n 20 1|,.[24—a ()
B,y =4 © T HE G G a) 0 T ERY 20,
0 ., zcR" <0,

where H is the Fox H-function (see [KiS04], [Po99], and [PBM90]).

20.3.2 Mapping Properties of the Single-Layer Potential

Once the fundamental solution is known, we now define the single-layer po-
tential

t
&(z,t) = So(x,t) = / / o(y, 7)E(x —y,t —7)ds,dr, x€ 2, te(0,7T),
o Jr

for a given boundary distribution o € C°°(Xr). The potential is the solution
of the fractional diffusion equation both in the interior domain §2 x (0,T) and
on the exterior domain [R™ \ 2] x (0,T) with the zero initial condition. We
denote the direct value of So on the boundary by Vo.

The single-layer potential So(x,t) is continuous up to the boundary due
to the asymptotic properties of the fundamental solution. This leads us to the
boundary relation

V(So)(x,t) = 7(P)(x,1) = Vo(z,1).

In other words, we have converted the initial boundary value problem of the
fractional diffusion equation (20.1) to a boundary integral equation

Vo(z,t) =~v(P)(x,t) = g(x,t), (x,t) € Xy (20.3)

In our analysis we need the mapping properties of the single-layer potential
in Sobolev spaces. The single-layer potential can be written as

(20.4)
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By (20.2) we have

1
e ) (20.5)

for smooth f with suppf C R™ x [0, oo[. It follows that the map

F(E s f)(&m)

b Exrp s HRER(R™ x (0,7)) — HLE2FUP2 (@Re x (0,7)) (20.6)
is continuous for any r € R, where comp means compact support and loc local
behavior in space variables. Since the trace map v : H™*(Qr) — HM*(Xrp)
is continuous for every A = r— 1, p = N> 1, and s > 0 ([LiMal72],
Theorem 4.2 of Chapter 1, and [LiMall72], Theorem 2.1 of Chapter 4), by
duality we have

vt H™NH(2p) = Hogno®(R™ % (0,7)). (20.7)
Using the trace theorem once again, combining (20.6) and (20.7), and noting
that the spaces H™*(Xr) and H™*(X7) coincide if and only if [s| < %, we
may conclude the following result.

Theorem 1. Let 0 < s < 1. The operator
Vi H 5735 5p) —» H550-9) (5, (20.8)

s continuous.

20.3.3 Jump Relations

As usual, we define the jump of the traces across the boundary as

[y(w)] = y(ug) = (u-),

where 7 is the spatial trace operator and u; = u|ge (u— = u|g) is a function
which is defined in the exterior (interior) of the domain (2. Similarly, the jump
of the normal derivative across the boundary is defined as

[(71(w)] = [v(Onu)] = Y(Onus) — ¥(Onu-).

For the proof of the jump relations we need some basic properties of frac-
tional derivatives and Green’s formula in the case of fractional time deriva-
tives. Because the properties of fractional derivatives are crucial for the proof
of Green’s formula, we consider them first.

In what follows, 9§ := D, denotes the left Caputo derivative on time
interval (0,T), and the right Caputo derivative on the interval (0, 7") is denoted
by ¢Df_. They are defined by the formulas
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Do) = F(ll—a)/o <t_3ads’

¢ _ 1 ¢'(s)
Di_¢(®) __F(l—a)/t Gt

The right and left Riemann-Liouville derivatives on the interval (0,T) are
defined by setting

o 1 d [t e
Divel®) =7 —a)&/o i—s)0

o _ 1 d [T pls)
Di_p(t) = _F(l —a) &/t = t)ads,

respectively. Note that for sufficiently smooth functions ¢ for which ¢(0) =
0 the left Caputo and Riemann-Liouville derivatives coincide (see [P0o99],
formula (2.165)), i.e

‘DG p(t) = Doip(t)- (20.9)
Integration by parts gives the following relation between the left Caputo and
the right Riemann—Liouville derivative:

1
/ D% (1) (t)dt = / o(t)DS_y(t)dt (20.10)

for p € C1([0,T7]) with »(0) = 0 and ¥ € C*([0,T]).
The time reversal operator on the interval (0,7T) is defined by setting

kro(t) = (T — t)-

Applying the time reversal operator to the left Riemann—Liouville derivative,
we have
DS_(k1¢)(t) = ki Dg,(1): (20.11)
Let us next consider Green’s formula for the fractional diffusion equation.
Let u,v € CY(Qy) with v(-,0) = 0. Using the properties (20.9), (20.10),
(20.11), and Green’s formula with respect to the space variable, we obtain
Green’s formula for the fractional diffusion equation:

/{(6? — Aukrv — kpu(0f — A)v}daedt = /{uc')n/vpfu — Opukpvldspdt
Qr Zr
= (yu, mkTv) — (MU, YETV).

By density arguments, Green’s formula extends to functions u,v € oY% (Qr)
such that (95 — A)u, (3 — A)v € L*(Qr).
Now we are able to state and prove the jump relations for the single-layer
entia he fr opcrator.
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Theorem 2. For every v € H-3~% (X)), the following jump relations hold:

[V(SY)] =0, [1(SY)] = —¢.

Proof. For the function ¢ let us denote u = S3. By the assumption on
¢ and the properties of the trace map, we have u € HY“%(Bgr x (0,T)),
where the radius of the ball By is so large that 2 C Bg. By the trace the-
orem ([LiMal72], Theorem 4.2 of Chapter 1, and [LiMalI72], Theorem 2.1 of
Chapter 4), y(ulg,) = v(ulge ), where Q% = (Br \ ©2) x (0,T). Hence, the
continuity of the trace across the boundary is proved.

Using the representation formula (20.4), we have

(0 = Au=+'(¢)
in the distributional sense in R™ x (0,7"). Choosing ¢ € C5°(Bg x (0,T)), we

get
(¥, 7(8) = (Y1), 8) = (0 — A)u, ¢) = (u. (DF_ — A)).

Making the time reversal and using the properties of the Caputo fractional
derivatives, D$_kr¢ = k0 ¢, from the previous equation we obtain

(W, y(kT)) = / (05 — A)¢p kpudxdt. (20.12)

BRX(O,T)

Using Green’s formula for the fractional diffusion operator with respect to the
sets Qr and QfF, we get (recall that on Q7 U Q5. we have (95" — A)u = 0)

/ (08 — Mg wrudadt = (m(w),1(wrd)) — (v(w),mi(krd)),  (20.13)

/Q (O~ Ay mrudadt = (), ¥(5ro)) + (), (7). (20.14)

The jump of the traces for u is [y(u)] = 0 by the first part of the theorem. Since
the test function ¢ is smooth, its traces are continuous across the boundary,

ie, Y(krd)] = [n(krd)] = 0.
Adding equations (20.13) and (20.14) together and using the previous trace
properties of 4 and k¢, we obtain

/ (0F — A)¢ rrudzdt = —([ni(w)], (k1)) (20.15)
Brx(0,T)

Combining equations (20.12) and (20.15), we finally obtain

(W, v(krd)) = ()], v(kre)) Vo € C7°(Br x (0,T)), (20.16)

which proves the second statement.
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20.3.4 Coerciveness of the Single-Layer Potential

For the proof of coercivity we use the standard technique by proving Garding’s
inequality and positivity for the single-layer potential (see the proof of Theo-
rem 3.11 in [C092]). To begin with we apply Green’s formula to the function
u = Sip, where ¢ € H_%'_%(Z'T). By the Gauss divergence formula,

<VU, vU>QT + <a?u7U>QT = <’Yl (u)af}/(U»ET + <(8ta - A)“? U>QT (2017)

first for smooth u and v and then by the density argument and continuity for
v € H%(Qr). Since u = St is the solution of the homogeneous fractional
diffusion equation, we obtain from (20.17) again by the density argument and
continuity:
<VU7 Vu)QT + <8?u7 U’)QT = <'71 (u)v ’7(’“))21"'
Since the Caputo derivative is positive semidefinite, the previous equality
implies
<’71(U‘QT)77(U|QT)>ET > /Q |V’U,|2d$dt
T

On the domain Q9. we obtain

u@nudsaBRdt—/ |Vu|?dzdt—(0u, u)Qe.-
Q7

(71 (ulqs.), (ulgs.)) :/

OBRrx(0,T)

By the jump relations we have

(1, Vap) = (m(ulgr), v(ulgr)) — (71 (ulgs), v(ulgs.))-

Hence,

wv = [

|Vu2dedt — / uwpudssp,,dt.
QruQsg

BBR X (O,T)

Since the fundamental solution E(z,t) is smooth on the boundary 0Bp,
the mapping v — ulap,x (0,17 : H 3% (X7) — H™*(0Bgr % (0,T)) is contin-
uous for any r, s € R, and the same is true for the mapping ¢ — O ulop, x (0,7)-
Hence, there exists a compact operator Ty : H~2 % (X7) — H2'% (X7) such
that

/ udpudspp,dt = (¢, T1)) 5.
8BR>< (O,T)

On the other hand, since H>% (Qr) — L2(Qr) is a compact embedding,
there exists a compact operator Ty : 2% (Xr) — Hz% (X'r) such that

/ |VU|2d{Edt = ||U’||§{1’0(QT) + ||u||§_]1,0(Q%) - <¢,T2'¢>
QTUQY
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Lemma 1. The norms of HY%(Qr), 0 < a < 1, and H**(Q1) are equivalent
on the subspace of functions satisfying the homogeneous fractional diffusion
equation.

The proof of this lemma is similar to that of Lemma 2.15 in [C092] and
is based on defining the space V(Q7), which consist of those functions u €
L2((0,7); H*(£2)) such that 0%u € L*((0,T); H=1(£2)) and is equipped with
the norm

4310z = Nl oy + 1951y 10

After that, we prove that the norms in spaces V(Q), H'°(Qr), and HY% (Qr)
are equivalent by using a proper interpolation result.
Utilizing the norm equivalence, we obtain

(W, (V +Tu+ To)) > C(||ul2, (20.18)

+ 7,

"%(Qr) ’%(Q;))‘

By Theorem 2 we have
1613 5 5y = I (elar) = 71l -3 55,

Combining this with inequality (20.18) and the trace theorem and denoting
T := 1Ty + Ty, we finally get Garding’s inequality:

W (V7)) > Ol g

274 (XYr)
We now consider the positiveness of the single-layer operator.

Lemma 2. For all 0 € H=% =% (X)) we have

Re(Vo,0) >0 if o #0.
Proof. By the standard density argument it is enough to show the positivity
for smooth functions o(x, t) for which the initial condition o(x,0) = 0 is valid.

Let us define the potential ¢ = So which is the solution of the homoge-
neous equation:

(0F — A)¢(x, 1) = 0 V(z,t) € Qr U Q-

For a fixed t > 0 we get, by the Gauss divergence formula,

0= [ (06~ 20)- o= [ 6 ode [ [VoPdo— [ 00--odsr,
0 Io) Io) r

0 :/_ (07 — Ag) - pdx :/_ e - pdr + /_ |Vo|2da + / O+ - ddsp.
o° o° 2° r

Adding these identities together, we obtain

08¢ ¢+ |Vol}da.
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Note that on the right-hand side we have used the continuity of the traces of
the single-layer potential proved in Theorem 2.

Integrating the previous identity with respect to the time variable over the
interval [0, T yields

[ mélodsrdi= [ (@r6- 9+ Vo }dnat.
Zr QrUQ%
By Theorem 2 we have

/ oVodspdt = / {02So - So + |VSo|?}dadt.
Xr QruQy,

Since the operators J!' and D! commute when acting on functions with zero
initial conditions, and they possess the semigroup property J*J% = Jo8 we
obtain, using the positive semidefiniteness of the operator J<,

T T
/J1‘°‘D1¢>-q§dt:/ JteDY . J'DYedt

0 0

/0T8?¢-¢dt

T
/ JI7*D'¢-J*J' D' dt
0

T T
JroDY.J* JP DY dt = / J% - gdt > 0.
0 N=—— N—— 0
9 g
Hence, the single-layer operator is at least positive semidefinite; that is,
/ oVodspdt > / |V So2dzdt > 0.
Xr QrUQY

If there exists a boundary distribution such that
/ oVodspdt =0,
Xr

then VSo =0forall x € QrUQS5 and 0 <t < T. Thus, 0f¢—A¢p = 05¢ = 0.
Now for every fixed x € Q7 U Q5 we have

¢ =J'""*D ¢ = 0.

Since the Abel integral equation J'~%p = 1) is uniquely solvable, we have
D'¢ = 0, and thus ¢(x,t) = C. By the zero initial condition the constant
¢(z,t) = C =0, proving the positivity of the single-layer operator.

As in [HsSa89] or [Co92|, we obtain the strong coerciveness of the single-
layer operator, and thus we are able to state our main assertion.
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Theorem 3. The single-layer operator V : ﬁ_%’_%(ET) — fI%’%(ET) is an
isomorphism. Furthermore, it is coercive, i.e., there exists a positive constant
¢ such that
2
Re(Vo.o) > el g .
for all 0 € H=2~ % (5y).

Corollary 1. For every g € H %’%(Z‘T), the fractional diffusion equation ad-
mits a unique solution ®(x,t) € H“%(Qr) which is given by the single-layer
potential

&(x,t) = So(x,t),
where o € ﬁ_%’_%(ET) is the unique solution of the boundary integral equa-
tion
Vo=g.
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21.1 Introduction

In this chapter, we discuss the numerical solution of the space-time boundary
integral equation

t
SFUF(:E7t):/ /uf(va)E(‘rfy7t7T)d8ydT:f(xat)v
JO JI'
zel, 0<t<T,

where I' is a smooth plane curve. The kernel of the integral operator,

1oty = 1 —a(a,
E(z,t) = ;ta 1|x| 2H12§ (Z|x|2t alEiS%(lJ))’ 0<a<l,

is the fundamental solution of the time-fractional diffusion equation (see
[KiSa04] and [PBM90]). We consider the problem

Ofd— AP =0 inQpr=10x(0T),
B(®)=g on Xpr=1Ix(0,T),
&(z,0)=0, x€ L,

where the boundary operator B(®) = @| x5, and 9% is the Caputo time deriva-
tive of the fractional order 0 < o < 1.

We shall consider the spline collocation method for the numerical approx-
imation of the solution on quasi-uniform meshes with piecewise linear tensor
product splines as the approximation space. We will show that the spline
collocation method is stable in a suitable anisotropic Sobolev space, and it
furnishes quasi-optimal error estimates.

In [KeRul] we have considered the mapping properties of the single-layer
operator S;. We have shown that the single-layer operator defines an iso-
meorphismponpanscalegofganisotropiegSobolev spaces, and that the operator
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is coercive in its natural energy norm. Also, the equivalence of the indirect
boundary integral formulation and the time-fractional diffusion equation has
been deduced.

The paper is organized as follows. In Section 21.2 we will briefly recall the
basic definitions of smoothness spaces, spline spaces, and their approximation
properties. In Section 21.3 we will present the basic mapping properties of
the single-layer operator and present its Fourier representation, which will be
used in the analysis of the spline collocation method. Finally, in Section 21.4
we will tackle the spline collocation method for the numerical approximation
of the single-layer equation. We will show that the problem is equivalent to
a modified Galerkin problem. The stability and error analysis is then based
on the properties of the corresponding bilinear form of the modified Galerkin
method.

21.2 Preliminaries

21.2.1 Smoothness Spaces

The space of continuous functions which are 1- periodic in the spatial variable
is denoted by CY°(R2). Moreover, the space C}” '(R2) contains the continuous
functions w for which 9§dlu € COO(RQ) Let R% = R x (0,T). The space

C’f Z(RT) consists of restrictions u = Ulgrx[o,7]. Finally, C(])C('jl (Ri) is defined to

be the space of restrictions u = Ulgx 0,77, Where U € C’f’l(Rz) is such that
Ulrx(=o0,0) = 0. The spaces are equipped with the natural maximum norm

o = o u(b, t
”U”Cf Y(R2) Ogllc?}ék(gstl)lgﬂy | ( )‘
0<l4 <l

Let r, s € R. The anisotropic Sobolev space H™*(R?) consists of distribu-
tions, which are 1-periodic with respect to the spatial variable, equipped with
the norm

Jalls = (S0 + 20k /R (1 -+ [0]2)* [k, ) 2dn)

keZ

Here u(k, n) for (k,n) € Z xR is defined as the Fourier transform with respect
to the spatial variable and the Fourier transform with respect to the time

variable, i.e.,
u(k,n) / / W@mkz+tn)y, (6, 1)d6 dt.

Furthermore, we define H™*(R?2 %) as the space of restrictions v = U ‘RX(O T,
UeH"” 6(R2) equipped Wlth the usual infimum norm

= ll'lf{”UHns LU= URX(O,T)}'
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Finally, let us introduce the anisotropic Sobolev space H s (R?), which takes
the vanishing initial condition at ¢ = 0 into account,

H"*(R?) = {u € H™*(R?) : supp(u) C R x [0, 00)}.

The spaces H ™$(R%.) are defined analogously.

For a more detailed study of the properties of the anisotropic Sobolev
spaces, we refer to the book by Lions and Magenes [LiMal72], [LiMalI72],
and to the series of papers [CoSa01], [C092], [HsSa89], [HsSa93], [H498], and
to references therein.

The following embedding results can be found, for example, in [Ha98],
Theorem 2.6.

Theorem 1. Let r > k + % and s > | + %, k,l € Ng. Then the embedding
}NF’S(R%) C Cf’l(@?p) is continuous.

21.2.2 The Approximation Spaces

For the approximation of the single-layer equation for the time-fractional dif-
fusion we need suitable approximation spaces. They are defined with respect
to the quasi-uniform meshes Ag = {0 : Op+n = O + 1} ez and Ay = {tk}{yzo
given by

0<01<“’<0N:1, O=ty<ti1i <--- <ty =T,
where the mesh parameters are

he = e 0iv1 —0il, he = | mmax It — tl,
respectively.

Let S1(Ap) be the space of 1-periodic piecewise linear continuous splines.
The space S$(4;) consists of piecewise linear continuous splines such that
#(0) = 0. Our approximation space is defined as the space of tensor product
splines M! = S1(Ay) ® S3(A,):

M!' = span{t, ¢ : Yy € Sl(Ae), bm € S&(At), 1<n<N,1<m<M}.

For the 1-periodic piecewise linear smoothest splines, the well-known ap-
proximation properties in periodic Sobolev spaces hold [E1Sc85]:

3
inf — < Ch™" s GHS, <s<2 < —.
L il < Ol wE B r <o <2 <)

Also, in S§(A;) the approximation property

inf U — . < Chi™|u| s
¢€Sé(At) || (’b”H 0,7) = t || ||H 0,T)

u(0)=0and 0 <r <1, r<s.




226 J. Kemppainen and K. Ruotsalainen

21.3 The Single-Layer Operator

In this section we recall the main results from [KeRul] and [KeRull] con-
cerning the mapping properties of the single-layer operator. We assume
that the boundary I' has a smooth, 1-periodic parametric representation
0 — x(f) such that |z'(f)] > 0. We denote u(f,t) = ur(x(f),t) and
Vu(0,t) = (Srur)(z(0),t). Then the single-layer operator can be written
in the form

t 1
Vu(o.t) = / / E(@(0) — 2(6), t — 7)u(e, 7|2 (¢)|dedr.

We notice that the single-layer operator is of Volterra type, i.e., if u(f,7) = 0,
when 7 < ¢, then Vu(8,7) = 0. This is a consequence of the properties of the
fundamental solution.

Note that the analysis presented here is valid for general smooth boundary
curves when arc length parametrization is used. Thus, we may assume that
the Jacobian of the parametric representation |z’'(6)| = p > 0 is a constant.

The single-layer operator defines an anisotropic pseudodifferential operator
which has the following representation [KeRull]:

Vu(b,t)

% > /]R a(m, n)a(m, n)e* ™" dn + Bu(0, 1)
meEZ n

Vou(6,t) + Bu(6,1),

where B is an operator of Volterra type which is a bounded operator be-
tween the anisotropic Sobolev spaces H*%5(Xp) — H*T23(+2) (), and
the principal part Vj has the anisotropic symbol

a6 = 517

12+ (in)*) 3.

In our analysis the following properties are crucial:

(i) The symbol is quasi-homogeneous of order 8 = —1; that is,
a(G,)\p,)\%n) =2"'a(0,p,m), A >1.

(ii) The mapping n — a(6, p,n) has polynomially bounded analytic continu-
ation into the domain {z € C| z = n —io, o > 0}, and is continuous for
o>0.

Note that our symbol a does not satisfy (ii), but we may define a proper
approximation for it which satisfies (ii) and we may conclude the following
theorem (see [CoSa00]).

Theorem 2. The single-layer operator has the following properties:

) is bounded for all s € R.
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(i1) There exists positive constant Cqy such that

Re(Vu,u) > Collull® y

for all u e H- 2~ 1(R2).
(iii) V : H-5~%(R2) — H2% (R2) is an isomorphism.

In the analysis of the collocation scheme we will make use of the two
following commutation relations. The first of them is the modification of the
corresponding result for the single-layer operator for the heat equation [Ha98],
Lemma 4.1.

Lemma 1. For every u € H"*(R2) there holds the commutation relation

8t Vu= Vatu

Proof. Let us assume that u is a smooth function; then integrating by parts
we will get

V(Owu)(0,t) = //E ) —x(@),t — 7)0ru(p, 7)dTd

= / {/E (¢),t — T)u (¢,7’)de|(1¢

— / / 0, E((6) — #(6). t — 7)u(g, 7)drde.

Now for the fundamental solution of the time-fractional diffusion equation
there holds the asymptotic estimate [EiKo04]

|E(z,t — 7)| < Clt — 7| exp{—ozTa |t — 7| 7=},

when ¢t — 7 — 07 and z # 0. Using this estimate and the initial condition
u($,0) = 0, we obtain

1 gt
V(0wu)(6,t) = —p/ / 0-E(x(0) — x(¢),t — 7)u(¢, 7)d7de.
o Jo
The statement follows now from the equation
(at + 3T)E(SE'(9) - $(¢), t— T) =0.
Let us define the operator 9, by setting
Dou(0,t) = dpu(0,t) + Ju(t),

where J u(t fo 0 t)df. Clearly, this operator extends to an 1som0rphlsm

all 7, s € R. Denote its inverse by 9"
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Next, we introduce the operators
Ku=V ~Vo)u, K=09,K09," Vu=Vou+ Ku.

Here the operator Vj is the single-layer operator on the circle with radius 4>

having the parametric representation xo() = = (cos(270),sin(270)). Since
the single-layer operator on a circle is the convolution operator in the spatial
variable, it is clear that V) and 9, commute, i.e.,

—2
QQVO = VOQG, u € C&(’)O(RT)-

Hence, we obtain
Vu= Qe VQQ_ n

Finally, we can prove the following assertion (see [Ha98] and [KeRull]).

Theorem 3. The operator K extends to a bounded operator of ﬁs’%s(ET)
into H*T25(2(2p) if s > -1,

21.4 The Spline Collocation Method

21.4.1 Formulation of the Problem

Assuming that the right-hand side of the single-layer operator equation is
continuous, then the collocation problem can be stated as: Find ua € M*!
such that

Vua(On,tm) = Vullp,tm), 1<n<N, 1<m<M.

The collocation problem is well defined provided both Vua and Vu are con-
tinuous functions.

Lemma 2. Let u € fI“(]R%). Then

(i) Vue Gy (Ry):

(ii) 0;Vu e H*O(R%);

(iii) 0,09V u € H"O(R%).

Proof. Using the commutation relation, we get

Vu=0;"Vou, wuc H“(R2),

where the operator J; 1is defined by setting

¢
o tu(6,1) :/ u(0, 7)dr.
0
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Obviously, the inverse operator has the following properties:
O 0 =0, ue HY'(RZ), o7': H"*R2) - H" 1 (R2).
Hence, we have the following representation for V:
Vu =010, [0,V0,'10p0u, ue HY'(RZ).

Now it can be shown [KeRul] that the operator V. = 0, IVQ(, is a con-

tinuous mapping from fI’""zT(R%) into HT+15(r+D) (RZ%). Hence, for every
u € HY'(R2) we have V.0,0,u € HV2 (R2) ¢ HYO(R2), and therefore,

Vu=08;19,'Va,d,u € H*'(RZ) c CLO(R).

The statements (ii) and (iii) follow from the relation Vu € H %1(R2) and
the mapping properties of the derivative operators.

Since the tensor product splines M c H L1(RZ), the collocation prob-
lem is well defined whenever the right-hand side of the equation Vu = f is
continuous.

21.4.2 Galerkin Formulation

For the unique solvability and stability of the collocation problem we will
proceed as in [HaSa94], where for the spline collocation problem of the single-
layer heat equation an equivalent Galerkin formulation was formulated by
means of the integration by parts trick. For this we will define the operator

Vau=0, V",

where 9y  is the approximation of the operator 9, defined by

-0

N—-1
g au(0, 1) = Bgu(B, 1) + %1—2"—%(9”,75).

n=0

In the modified Galerkin method we will find a function uy € M such
that
(V. A01Dgun, 010gv) = (V. A01Dgu, 0;05v) Vv € M,

where w is the solution of the single-layer operator equation.
The following theorem is a slight modification of Theorem 3.1 in [HaSa94],
and we will omit its proof.

Theorem 4. Let u € I}l’l(R%) be the solution of the single-layer operator
equation. Then solution of the collocation problem solves the modified Galerkin
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21.4.3 Stability and the Error Analysis

For the stability analysis we will need the following discrete norm in the
approximation space M!, which will be defined by setting

bull 3 o = 108gull_3 g1

As usual, the stability of the Galerkin method relies on the Lax—Milgram
lemma, which is valid if the corresponding bilinear form is coercive and con-
tinuous. Hence, we have the following.

Theorem 5. Assume that u € HY'(R2) be the solution of the single-layer
equation Vu = f. Then for all 0 < hg, hy < hqg there exists a unique solution
up € M1 to the collocation equations. Furthermore, we have the quasi-optimal
error estimates

lu—ual_g 5 <C inf Ju—vl_y _s.
Proof. Let us define the bilinear form a(u,v) = (V.0;9yu, 8:9yv). By the map-
ping properties of the operator V. = 9,V 9y ! the bilinear form is continuous;
that is,

la(u, v)| < C|0:9gul| 1

poq 1080y g

On the other hand, since the bilinear form can be decomposed as

a(u,v) = (Vordgu, 0dyv)
= (Vu0rdpu, ath”) + <Q9(V — Vb)Oru, 8tQ0U>v

where V — V is a compact mapping and Vj coercive, we get the inf-sup
condition [BaAz72]

inf sup V001, 0:0) >C >0.

oueM? grvenrt flull—y —sflvll-3 -«

Let us now approximate the bilinear form a(u,v) = (V0 0pu, 0;04v) with
aa(u,v) = (V. A0,0pu, 010v).
By the approximation properties of the trapezoidal rule, we have

(V= V£)08gu, 019yv)| < Chellul 3 < [lvll -3, -

a.
2 4

Hence, for sufficiently small hg, the bilinear form aa(u, v) is continuous in the
discrete norm || - |1 _o and satisfies the inf-sup condition

4

V A0.0pu, 0,0
inf sup W a0i0yu, 0:04v) >C > 0.

et o Tul_y 5 I0l_y

The unique solvability and quasi-optimality now follow by the standard

ol Lal Zyl_i.lbl
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21.4.4 Error Analysis

From now on we will assume that the solution of the single-layer equation
u € H>Y(R%) N HY2(R2). By the approximation properties of the spline
spaces, we will get the following lemma [KeRull].

Lemma 3. Let u € H>'(R2) N H“2(R2) and Py, : L2(R%) — M" be the
orthogonal projection. Then we have the error estimate
1
lu—Pogull_y _s < Ch [ullos +Chy ¥ Jullyo.
The quasi-optimality of the solution of the collocation problem and the
previous lemma finally yield the error estimate.

Theorem 6. Assume that 0 < hg,hy < ho. Let ua € M? be the solution of
the collocation equations and u € H*'(R%) N HY“?(R2) be the solution of the
single-layer equation Vu = f. Then

+)

3 1
lu —uall_y _a < Cihg lullzy + Cahy ™% ulls 2.
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22.1 Introduction

Condition monitoring is becoming more and more important in various areas
of industry, due to the demands of efficiency and prolonged continuous running
time of machinery. For example, in the Finnish pulp industry there have been
demands for continuous running times of up to 18 months. To be cost efficient,
maintenance operations should be carried out during scheduled downtime;
hence, early and reliable fault detection is very important.

Vibration measurements have been the central tool in condition monitor-
ing. Signals from displacement, velocity, and acceleration sensors have been
used to estimate the condition of the machinery. For example, increased root-
mean-square (RMS) values or changes in the frequency spectrum may indicate
different types of faults, such as unbalance, misalignment, and bearing defects.

In rolling element bearings, a local fault on the raceways or on the rolling
elements causes wideband bursts in the vibration signal measured from the
bearing house. When the fault is on the inner race, the time interval between
the bursts corresponds to the shaft frequency. If the shaft is rotating slowly,
as in pulp washers, these bursts occur at long intervals and may be hard to
detect from the frequency spectrum or the RMS value of the signal.

It has been reported that in some cases higher time derivatives of the
displacement are more sensitive to certain faults than the velocity & or accel-
eration . In a case study, a fault on a roller bearing inner race produced the
largest relative peak value, compared to that of an intact bearing, when the
fractional order of the time derivative was 4.75 [LaKo03]. It is then natural to
assume that at least some faults result in reduced regularity of the vibration
signal.

Another phenomenon where sudden bursts can be detected from the ac-
celeration signal is cavitation in water turbines. Cavitation occurs when the
local water pressure falls below the vaporization point and gas bubbles are
formed. As the bubbles collapse, shock waves are created which detach metal

C. Constanda and ML.E. Pérez (eds.), Integral Methods in Science and Engineering, 233
Volume 2: Computational Methods, DOT 10.1007/978-0-8176-4897-8 22,
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from the turbine blades. It has been suggested that cavitation bursts have the
form of a chirp.

The aim of our study is to find if wavelet methods can be applied to these
problems in condition monitoring.

22.2 Holder Regularity

First we summarize some definitions regarding Holder regularity.
A function f is said to possess a Holder exponent « at a point zg, if there
exists a polynomial P, of degree n < «, such that

|f(z) = Po(z — 20)| < Cl — xo|* (22.1)

when z is close to xg. Polynomial P, is typically the Taylor polynomial of f.
The corresponding function class is denoted by C'*(zp). The supremum of all
values of « such that inequality (22.1) is valid is called the Holder regularity
of f at xg.

If inequality (22.1) holds for all z and xy on an interval, « is called the
uniform Hoélder exponent of f.

For tempered distributions of finite order, if « is not an integer, f has a
uniform Holder exponent « if and only if the primitive of f is uniformly o+ 1
on the same interval.

22.3 Wavelet Characterization of Holder Regularity

The local Holder regularity of a function f is characterized by the decay of
its continuous wavelet transform.
A wavelet, as usual, is a function v satisfying an admissibility condition

/dew:/o de<oo.
0

w R

The continuous wavelet transform is now the inner product of f against
1 translated by = and dilated by scale s, and normalized by a factor %,

t—x

Wit = [ s

S

A wavelet 9 is said to have N vanishing moments if the inner product
with polynomials of degree at most N — 1 is zero, that is,
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Let ¢ be an admissible real-valued wavelet which is n-times continuously
differentiable and has n vanishing moments and compact support.

The following theorem of Jaffard gives a necessary and sufficient condition
for f to be of Holder regularity « at a given point xg [Ja89)].

Theorem 1. Let n € N and f € L?(R). If a < n and f € C*(x¢), then for
any scale s,

(Wf(s, )] < A(s” + & — o|).

On the other hand, if a« < n, o € Z, and if for any scale s and all x in a
neighborhood of xg,

Je>0,A>0:|Wf(s,z)| < As

_ [
3B >0 [Wf(s2)| < B(s® + —2—20l"
| log [z — 0|

then f € C*(xy).

In practice, a widely used method by Mallat and Hwang [MaHw92] relates
local Holder regularity only to the local extrema ridges of the wavelet trans-
form. A ridge is a series of local maxima through the time-scale half-plane. In
the case of an isolated singularity, the Holder regularity can be estimated from
the maxima values along a ridge pointing to zg. Assume that the wavelet
has a compact support, n continuous derivatives, and itself is the nth deriva-
tive of a smoothing function, for example, a B-spline. The following theorem
characterizes the Holder regularity of an isolated singularity [MaHw92].

Theorem 2. If there exists a scale so, an interval ]a,b[, and a constant C
such that for all x €]a,b] and s < sg, all modulus maxima of W f(s,x) belong
to the cone

| —xo| < Cs, (22.2)

then f(x) has a uniform Holder exponent n in a neighborhood of any x1 €]a, b|,
x1 # xo. Function f belongs to C*(x) if and only if the wavelet transform of
f satisfies

W f(s,x)| < As® (22.3)
on the ridges inside the cone (22.2).

We describe a procedure to estimate the location and the Holder exponent
of an isolated singularity.

1. Compute the wavelet transform.
2. Find the local maxima and minima at each scale.
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3. Find and register the ridges by following the maxima and minima from
fine scales to coarser scales.

4. Estimate the points where each ridge would end at the time axis by fitting
a line at fine scales.

5. Of all ridges pointing to xg, choose the one with the largest maximum
value on the finest available scale.

6. Take the logarithm of the bounding inequality

log(|W (s, x)[) < log(A) + alog(s),
and estimate the regularity from the slope of a least-squares line.

An illustration of the procedure with a synthetic signal is plotted in Fig-
ure 22.1, with regularity o = 0.8 at location z = 1 and regularity a = 1.6 at
location = = 3.

1.4
1.2}
1
0.8
0.6/
0.4
0.2}
% 1 2 3 4
Time

Fig. 22.1. Synthetic signal with regularity 0.8 at z = 1 and regularity 1.6 at x = 3.

The wavelet used is the second derivative of the Gaussian function, which
is essentially supported on the interval [—5, 5] and has two vanishing moments.
The finest scale used is normalized as 1. In the wavelet transform, there are
two ridges pointing to each singularity at the time axis, as can be seen in
Figure 22.2. Let us study the ridges pointing to z¢g = 1.

From the doubly logarithmic plot of the modulus maxima values versus
scale in Figure 22.3 it can be seen that the maxima values obey the predicted
upper bound of Theorem 2. On finer scales, the effects of limited precision
start to show. A linear least-squares fit gives slope 0.79, which is correct to
one decimal. Similarly, at location 3 the estimate is 1.62.

22.4 Chirps

A class of singularities that are not isolated is that of chirps. In signal process-
mg, a chlrp means a short 51gnal with either increasing or decreasing instanta-
\ estthesdefinition of Jaffard and Meyer [JaMe96].
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Time

Fig. 22.2. The ridges of the wavelet transform of the signal in Figure 22.1.
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Fig. 22.3. Log-log plot of the modulus of the wavelet transform along the ridges
pointing to xg = 1, as plotted in Figure 22.2.

Definition 1. Let « > —1 and 8 > 0. A function f, integrable in a neighbor-
hood [—n,n] of zero, is a generalized chirp of type («, B), if

f(@)=a%(z™P) ifo<z<n (22.4)
f(x) = |z|*g_(J=|7P) if —n<az<0, (22.5)
where g_ and g are indefinitely oscillating functions on [n™?, ool

These chirps can be characterized by the decay of wavelet coefficients,
modulo a smooth residual term [JaMe96]. Let ¢ be a wavelet that belongs to
the Schwartz class S(R) of smooth and rapidly decreasing functions and has
all vanishing moments. Further, assume that the dual wavelet 1; exists, has N
vanishing moments, and is smooth and compactly supported.

Theorem 3. Let f be integrable in a neighborhood of the origin. Then
f(@) = |z[*ge (|2 7P) +r(x), r(z) €O

here exists & > 0 such that
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x 107°

0 0.02 0.04
Time

Fig. 22.4. A chirp with @« = 1.8 and g = 1.2.

S o
W f(s,z)| < C|a:|°‘(|x|Tﬁ) if0<s <z <§ (22.6)
14+
W f(s,z)| < C’m|ac|°‘(L)m Vm, if 21T < s < x| <9 (22.7)
s
[Wf(s,z)| < Cps™  Vm, if |z| < s <. (22.8)

Inequalities (22.6) and (22.7) imply that upper bounds reach a maximum
along the curve s = |z['T#. If such a ridge can be found from the wavelet
transform, parameters o and § can be estimated:

o The ridge curve becomes a straight line in logarithmic coordinates, with
slope 1 + (.
e « is the slope of ridge height versus x in logarithmic coordinates.

We show an illustration with a function with o = 1.8 and 8 = 1.2 plotted
in Figure 22.4.

The wavelet used is the first derivative of the Mexican hat function, which
does not exactly satisfy all of the given conditions, but which is compen-
sated by not having to go to the finest scales. The modulus of the wavelet
transform is plotted in Figure 22.5, with the maxima ridge (dark wavy curve)
superimposed on it.

The parameter § can be approximated from the log-log data of time and
scale along the ridge, plotted in Figure 22.6. The slope of a least-squares line
is 2.19, giving the value 1.19 for j3.

Similarly, the parameter a can be approximated from the log-log data of
time and the modulus maxima along the ridge (Figure 22.7). A value of 1.79
is obtained for a.
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0 0.02 0.04
Time

Fig. 22.5. Modulus maxima ridge of the wavelet transform of the signal in Fig-
ure 22.4.
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Fig. 22.6. Log-log plot of the ridge curve in Figure 22.5.

22.5 Holder Regularity for Roller Bearings

Four double-row spherical roller bearings of type SKF 24124, typically found
in felt guide rolls of a paper machine, were used in experimental equipment.
Three of the bearings had inner race faults of variable degrees and one was
intact. The acceleration signal (Figure 22.8) was measured from the bear-
ing house of each bearing. Continuous wavelet transforms were computed for
each signal using the second derivative of the Gaussian function (Figure 22.9).
Only ridges above a threshold proportional to the L? norm of the signal were
considered. The Holder exponent was estimated from the slope of each ridge.
From Figure 22.10, it can be seen that above the threshold, the negative ex-
ponents were distinctive to faulty bearings. Also, the locations of the negative
exponents seem to correspond to where the rolling elements hit the fault.
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slope~x 1.7

log |W (s, )]

—4’.1 -4 -3.9 -3.8 -3.7
logx

Fig. 22.7. Log-log plot of the ridge height versus time.
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Fig. 22.8. Acceleration signals measured from the bearing house of four bearings.
The signal in the lower right corner is from an intact bearing.

22.6 Discussion

The experiments clearly indicated that the local Holder regularity of the vi-
bration signal can be useful in condition monitoring of bearings. The slopes of
the most prominent ridges of wavelet transform seem to reveal faults on the
inner race, at least in the cases studied. Larger sets of test data with different
kinds of bearing defects would give more precise results.
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23.1 Introduction

Much previous work on the characteristics of wire antennas in gyrotropic me-
dia such as a magnetoplasma, for example, either applies to electrically small
antennas for which the current distribution along the antenna wire can be as-
sumed given [K099], or employs the transmission line theory for determining
the current distribution (see [Ad77] and [Oh86]).

In this study, the problem of finding the current distribution of strip an-
tennas in a homogeneous gyrotropic medium is attacked using an integral
equation method. Although our approach is applicable to a general gyrotropic
medium, our primary attention will be paid to the case of a resonant gyroelec-
tric medium in which the refractive index of one of the characteristic waves
tends to infinity when the angle between the wave normal direction and the
gyrotropic axis approaches a certain value determined by the medium pa-
rameters. In this case, the classical thin-antenna theory cannot be employed
readily since no matter how small the cross section of the antenna wire might
be physically, it is always possible to find some wave normal direction for
which one wavelength in the medium will become less than the wire cross-
sectional extent and the antenna wire will appear to be “thick.” We do not
consider the antenna problem in its full generality, but focus on two particular
strip geometries for which the problem is mathematically tractable.

23.2 Basic Formulation

Consider a homogeneous lossless gyrotropic medium described by the dielec-
tric tensor

e —ig 0
e=e| g e 0 |, (23.1)
0 0 n
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where €q is the permittivity of free space. It is assumed that the gyrotropic axis
is aligned with the z-axis. Note that in a gyroelectric medium, the direction
of the gyrotropic axis coincides with that of a superimposed static magnetic
field By. The elements ¢, g, and 7 of the tensor in (23.1) are functions of the
medium parameters and the frequency w of an electromagnetic field. Recall
that a gyrotropic medium is resonant if sgn (¢) # sgn (1), and is nonresonant
otherwise [Ko99].

Two geometries of a perfectly conducting strip of width 2b excited by a
time harmonic (~ exp(iwt)) voltage generator will be discussed. Firstly, we
will consider a straight strip of infinite length, which is aligned with the z-axis
and perpendicular to the y-axis. We assume that the current on such a strip
antenna is excited by a given voltage V, that is applied over an interval |z| < d
and creates the field ES** at y = 0 and |z| < b (see Figure 23.1). Explicitly,

B (2,0.2) = 20 [Ue +d) —~ Ulw — )] [U(z +b) ~ Uz ),
where U is the Heaviside step function. The current on the strip can be rep-
resented as

J = 30d(y)I(x, 2),

where §(y) is the Dirac delta and I(x, z) is the surface current density.

S

N\
<y

2b

Fig. 23.1. Straight strip antenna.

Secondly, a strip coiled into a circular loop of radius a whose axis is parallel
to the z-axis will be considered. Such an annular strip antenna is excited by
a voltage V{) which creates an electric field with the only nonzero azimuthal
component E$* at p = a and |z| < b in the angular interval [¢—¢o| < A < 2
(see Figure 23.2). Thus, for p = a,

Vo

E§*(a.¢,2) = 55 [U(6 = do+ 4) = U(¢ — do — A)] [U(z+b) — Uz = b)].

(23.2)
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Here, 2A is the angular opening of the interval to which the voltage is applied

and p, ¢, and z are cylindrical coordinates. The current of the annular strip
antenna is written in the form

J = <7305(.0 - a)‘[(d)’ Z)a

where I(¢, z) is the surface current density.

By

2b

Fig. 23.2. Annular strip antenna.

To derive integral equations for the current distributions of the antennas,
we should write the field excited by the unknown antenna current and ensure
the required boundary conditions for the tangential components of the electric
field on the surface of a perfectly conducting strip.

23.3 Field Representation

To find a formal representation of the electric field E due to the unknown
current J, we start from the Maxwell equations

VX E=—iwB, VxB=iwue-FE+ uyd,

where pg is the permeability of free space. Upon eliminating the magnetic
field B, one obtains

VXVXE-—wye E=—iwuoJ. (23.3)

We now go over to the Fourier-transformed version of (23.3). Our definition
of the spatial Fourier transform of any function F(r) is

F(n)=_[ F(r)exp(ikon - r)dr,
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1/2

where ko = w(eopo)'/? is the wave number in free space. The Fourier transform

of (23.3) is written as
T-E(n) = —iky ' Zo J(n).

Here, Zy = (10/€0)"/? is the characteristic impedance of free space and T is
a tensor whose elements T; (i,j = x,y, z) are defined by

2 -1
Tij =N (Sij —Ninj — €y 8¢j,

where 9;; is the Kronecker delta. The Fourier-transformed equation can be
solved formally for E(n) to yield

E(n) = —iky *ZyT7 - J(n). (23.4)

The elements of the inverse tensor T~ are given by 7. = Cy;/D, where
Ci; and D are the adjoint and determinant of the matrix Tj;, respectively.
The determinant D is written as

D= nln? —n2(n.)] [n2 ~n2,(n.)] .} =n2 40,

where

n? (n )—e—l(l-l-i)nz-l- [1(1—5)2n4—£n2+ 2 v (23.5)
z,a\ TV L 9 n 1T Xo 4 n €L n 1 Tg . .
Here, the subscript a stands for the “ordinary” (a0 = o) and “extraordi-
nary” (« = e) characteristic waves of a gyrotropic medium, and x, = —Xe =
—sgn(1—e/n). The square root in (23.5) is chosen to have the positive real part.
The functions n, (1, ) are defined to have the negative imaginary part. It is
worth noting that the quantities n, o and n, are, respectively, the longitudinal
and transverse components of the normalized (to kg) propagation vector of the
corresponding characteristic wave. It is easily verified that if Ren; — 0, then
n,e(ny) — sgn(e) (—e/n)?ny and n,o(ny) — —i(e/n)"/?n, in the reso-
nant and nonresonant cases, respectively. For the “ordinary” wave in both

cases, we have n, ,(n,) — —iny as Renj — 0.

23.4 Integral Equations for a Straight Strip Antenna

We start from a straight strip antenna whose surface current can be repre-
sented as

I(z,2) = ;€7Or / I(ng, z) exp(—ikongz)dng. (23.6)

To obtain integral equations for I(n,,z), we use the boundary conditions
E,= —Ee"t and F, =0 on the strlp Surface Allowing for (23.6), we find the
rier-transforin g n) in (23.4) and take the inverse Fourier
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transforms of the functions E,(n) and E,(n) in the form of integrals over n,
ny, and n,. Observing that the corresponding integrands are singular at zeros
of D, ie., at n, = £n,,(n,) and n, = £n,(ny), we perform integration
over n, using Cauchy’s theorem of residues and write expressions for the
Fourier-transformed (with respect to n,) tangential components E(ng,y, z)
and F,(ng,vy, z). Applying the boundary conditions for these quantities at
y =0 and |z| < b, we then obtain

b .
47V sin(kodn,)
K(z)z_l-[gj/d/:_ 0 T 23.
/_b (ng,z—2")I(ng, 2")dz Zoko  Fodn. (23.7)
b
/ K& (ng, z — 2') I(ng, 2')dz' =0, (23.8)
b
where |z| < b and
00 2
]C(z) o - / (nJ_ 77) (na — 5)
" ZX e a(nd o —12,)
g%n2
X [’I’Li + ﬁ] exp(—ikonz,a|(|)dny, (239)
(2) * ng(ng —¢) ,
K¥ (ng, ¢) = sgn(¢ Z Xo W exp(—ikon.,o|¢|)dn,. (23.10)

Hereafter, n2 = n? i+ nz’a. Thus, the problem of finding the current distribu-
tion has become one of solving integral equations (23.7) and (23.8) with ker-
nels (23.9) and (23.10), respectively.

The behavior of the solutions of integral equations (23.7) and (23.8) is
determined by the properties of their kernels K(*) and K(?). We will discuss in
detail the case of a resonant medium and then give only the resulting formulas
for the case of a nonresonant medium. It can be shown that kernels (23.9)
and (23.10) can be divided into singular terms K (**)(n,, ¢) and nonsingular
terms F(*2) (n,, ¢):

’C(m’z)(n:m C) = K(m’Z)(nwa C) + F(:c,z) (nx’ C)

In the resonant case, the singular terms are represented as follows:

K® (ny,¢) = —2/ [ni|5n|_1/2 cos (koasgn(€)|C| n2 + n%)
0

+ iexp (—k0|(| n? + n%)] (n2 + nz)_l/any,

o0

K® (ng, () = 2nsgn(¢) exp (—ikoasgn(€)|C| n2 + ni) dn,,
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where o = (—¢/n)'/2. The expressions for the nonsingular terms F(*) and
F®) are evident and are omitted for brevity.

If the strip is so narrow that the inequalities
b<2d, (kob)® max(lel,|g]. |n]) < 1

are satisfied, then the solutions of integral equations (23.7) and (23.8) can be
found in analytical form. For the narrow strip, the kernels of these integral
equations can be approximated, and one arrives at

b ) )
[ bl g 2V sl

b
8 —S(ng) /_b I(ng, 2')d?,

Z )in
b 2 Zoko k‘odnw
(23.11)
b i
I(na,
/ Hna2) 0, (23.12)
_p R—Z

In the preceding equations,

S(na) = 8 [n2len|™/2 (o + 7+ Wlnal) +i (7 + Inlng| +iF ) (ny,0)/2)] .

-1
B =len /2 (2 +ilen?)

where v = 0.5772... is Euler’s constant, and use is made of the fact that
F®)(ng,0) = 0.

Equations (23.11) and (23.12) are approximate integral equations which
can be solved exactly. Observe that the solution of equation (23.11) with the
logarithmic kernel automatically satisfies equation (23.12) with a Cauchy sin-
gular kernel (see [Ga90] and [Vo74]). This circumstance allows us to consider
only equation (23.11). Its solution, upon substituting into (23.6), yields

B Vo /°° sin(kodn,) Bexp(—ikongx)
ZomV/b% — 22 | _ kodn, 111(4/]601)) — S(nz)

In the vicinity of the strip edges at z = +b, the surface current density ex-
hibits the edge behavior consistent with the Meixner condition [Me72]. The
total current Iy (z) through the cross section x = const of the strip is given

I(z,z) =

dng,. (23.13)

by Is(z) = ffb I(z,2)dz and is evidently finite. Its closed-form expression
can be obtained approximately if the strip is so narrow that the inequality
In(4/kob) > S(n,) is valid for |n,| < (kod)~!. Then the term S(n,) can be
neglected and the n, integration in (23.13) is performed using the technique
of contour integration. For |z| > d, we thus have approximately that

B TVoh
B Zokoln(4/k0b)

Ig(w)

exp(—ih|xl), (23.14)
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h = kolen|**(1 — i)/V/2. (23.15)

Closed-form expression (23.14) for the current distribution refers to the
case of a resonant medium. It can be shown that in the nonresonant case
where sgn (£) = sgn (n), the expression for the current distribution is again
given by (23.14) if the quantity A is taken in the form

ko(em)V/4 if d
h:{o(an) ife>0 and 1 >0, (23.16)

—iko(en)'/* if e <0 and 7 <O0.

23.5 Integral Equations for an Annular Strip Antenna

We now turn to an annular strip antenna, as shown in Figure 23.2. To find
the function I(¢, z), we should apply the boundary conditions E, = —Eg"t
and E, = 0 on the antenna surface (for p = a and |z| < b).

To derive representations for the E, and E, components on the strip sur-
face, we expand the unknown surface current density I(¢, z) into the Fourier
series

I(¢,2) = > In(z)exp(—img). (23.17)

m=—0Q

Similarly, the quantity Eg"t given by (23.2) is expanded into the Fourier series

Eg* = Z Ay exp(—ima),

m=—oo
where Vo sin(ma)
sin(m .
"= ra ma P

Then we calculate the quantities J,(n) and J,(n) corresponding to represen-
tation (23.17) and find E, , .(n) from (23.4). Evaluating the field components
E,(r) and E,(r) and satisfying the boundary conditions for them on the strip
surface, we get the integral equations

/b;c(¢)( — (2 d ’__QA_’” (23.18)
A '
b
/ K& (z = 2') I,(")dz' =0, (23.19)
—b

where |z| < b, m =0,+1,4+2,..., and

2

koan, n2 —e

e N 00 m
K@) = Z’% / [ Tm(koan) — —2—J' (koan. )
a=0 0

— 2 —
o L (n 77)(7"bC2¥ €) exp(—ikonz.olC))dny, (23.20)

Nel
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KO = sen(©) 20 7| g oans) = 2 S Ghpans)

koa n2 —e
n? (n? —¢ ,
X Jm (koan_) % exp(—ikon; o|C)dny. (23.21)
z,e 2,0

Here, J,, and J;, stand for the mth-order Bessel function of the first kind and
its first derivative with respect to the argument.

Equations (23.18) and (23.19), with the kernels given by (23.20) and (23.21),
respectively, are singular integral equations for I,,(z). As for a straight strip,
the kernels can be represented as

KO = KO + FE(©),

where the singular terms K (¢) in the case of a resonant medium are
written as

le’e) m2
K@) = /0 {W J2 (koan1) exp(—ikoo sgn (¢)|¢[n)

+iJ2_ (koany ) exp(—ko|C|n,)|dny, (23.22)

m > )
KE(Q) = 7o sen ()17 (hoan ) exp(—ikor sen (2l ..
0
(23.23)
while the regular terms Fﬁ)’z) are not present here in the interests of brevity.
The integrals in (23.22) and (23.23) can be expressed in terms of the Leg-
endre functions of the first and second kinds, which can be approximated by

simpler functions in the case of a narrow strip where the following conditions
hold:

b<a, b<al/el'"?  (kob)” max(|el, lg|, n]) < 1. (23.24)

As a result, we arrive at the approximate integral equations

b ’ 2 1/2 b
— 27 A,, /
/ Im(z’)ln—|z i |dz’ ] (koa)”len| —Sm/ I, (2")d7,

—b 2a Zoko m? + i(koa)?|en|1/2 —b
(23.25)
b !
I,
/ m (z/) dz' =0, (23.26)
—b zZ—Z
where |z| < b and
ma b LR R R
m = m°|Ilno + v+ m+ = | + 1= sgn(e
m2+i(k0a)2|877|1/2{ Ty 2 2 %8 ()

+ i(koa)?|en|'/? {’y +9 (m - %) — irkoa F(?) (0)] }
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Here, 1(z) = dInl'(z)/dz is the logarithmic derivative of the gamma function.

For each m, the solution of equation (23.25), which also satisfies equa-
tion (23.26), can be found by the methods presented in [Vo74], and is written
as follows:

I (Z) _ 2 (koa)2|57l|1/2 Am
" Zoko Vb2 — 22 m2? + i(koa)2 |en|1/2 In(4a/b) —
The resultant expression for total current I's( f 1(¢, z)dz can be written

as

Is(¢) = ao+ > {2am cos[m(¢ — ¢o)] — (am — a_m) explim(é — ¢o)]},

e (23.27)
where
iy 1
“ T " Zokoa In(4a/b) — 2+ 2In2 + irkoa £ (0)
" _ iVo sin(mA) Om,
" Zokoa mA  In(4a/b) —
in which

i(koa)”|en| /2

m? + i(kga)?|en| 1/

The last term in the braces in (23.27) appears due to the gyrotropy of a
medium. It can be shown that in the case of a narrow strip, the last term
gives the very small contribution to the total value of Is(¢). A closed-form
expression for the current distribution can be obtained if the strip is so narrow
that b < 2aA < a and In(4a/b) > S,, for m < [A], where A = min(a/b, a/cb)
and the notation [A] designates the integer part of A. Then the total current
given by (23.27) can be evaluated approximately as

iVomh cos[(m — ¢ + ¢p)hal
Zokoln(4a/b) sin(rha) ’

where 0 < ¢ — ¢g < 27 and the quantity h coincides with that in (23.15).
The above formula, obtained for the antenna current Is(¢) in a resonant
gyrotropic medium, remains valid in the case of a nonresonant medium if A
is taken in the form given by (23.16).

Uy = —

Is(¢) = —

23.6 Conclusions

We considered the problem of finding the current distribution on perfectly
conducting strips in a gyrotropic medium described by the off-diagonal per-
mittivity tensor Prlmary attentlon has been focused on the case of a reso-
nant medium in y egindex surface of one characteristic wave
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extends to infinity at a certain wave normal direction. For two special geome-
tries, the problem was reduced to a set of singular integral equations. Based
on the results of the solution of these equations, closed-form expressions have
been derived for the current distribution along the antenna surface. It should
be noted that this work differs from that of other workers, who considered
similar problems (e.g., [Ad77] and [Oh86]), in that we have started from a
full-wave treatment of the problem and have obtained a solution by the use
of an integral equation method. Finally, we note that the theory developed in
this chapter makes it possible to establish the applicability conditions of the
transmission line theory, which was used in earlier papers for describing the
current distribution on narrow strips in a gyrotropic medium.
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24.1 Introduction

In this chapter we consider two-grid methods for the second kind integral equa-
tion with Green’s kernel. Two-grid methods based on the Nystrom operator
have been studied in [At97], whereas methods based on a new approximat-
ing operator have been defined in [Ku04]. In the case of an integral operator
with Green’s kernel, the usual definition of the Nystrom operator by replac-
ing the integration with a numerical quadrature results in a loss of accuracy.
Whereas in [AtSh07] a modified Nystrom operator is defined explicitly, a sim-
ilar treatment is considered in [Ku05]. The purpose of this chapter is to define
two-grid methods based on the modified Nystrom operator. We compare the
performance of these methods by a concrete example.

24.2 Two-Grid Methods

Consider the following integral equation:

b
Au(s) — / E(s,t)u(t) dt = f(s), s€a,b],
that is,
A —K)u=f. (24.1)

It is assumed that the kernel k(s, t) is continuous in s and ¢ and that (A —K)
is invertible.

Let a = $1 < 83 < +++ < S$p41 = b be a uniform partition of [a,b] and let
b—a ... .
h=si41—8= be the norm of the partition. Choose a basic quadrature
n
formula
1 T
/ g(t)dt =y w; g(&)-
— —
=1
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By considering the affine 1-1 map from [—1, 1] onto [s;, s;+1], a corresponding
quadrature formula on [s;, s;41] is given by

Sit1 h < 8; + s; h
[ st S gt whero, = 5
Si j:l

N

The composite quadrature formula is then given by

b n si h nor nr
[owar=>" [ gttt = 53" S wigtnig) = 3wy aln)
a i=1"si j=1

i=1 j=1
where

h

Wn,(i—1)r+k = Ewlm Tn,(i—1)r4+k = Ti,k> 1= 15 sy k= 1,... T

Using the above quadrature formula, the Nystrom operator is defined as fol-
lows.

Knx(s) = Z W, 5k (8, T ) T(Th 5)-
j=1

It is well known that K, converges to K in a collectively compact fashion.
Hence, for all n large enough,

M — Ky )un = f (24.2)

has a unique solution, which provides an approximation to the solution
of (24.1). The solution of (24.2) is obtained by solving a system of equa-
tions of size mr. In order to achieve the required accuracy, one may have to
choose n very large. Two-grid methods, which involve solution of a system
of relatively small size, provide iterative approximations to wu,. A two-grid
method based on the Nystrom operator corresponding to a coarse grid is dis-
cussed in Atkinson [At97]. A method based on a New approximating operator
is defined and analysed in Kulkarni [Ku04]. For the sake of completeness, we
describe these two methods below.

24.2.1 Two-Grid Method: Nystrom Operator

Let
a=1t <ty < - <tmy1=0>b, m<n,

be a uniform partition of [a,b] corresponding to a coarse grid and let K, be
the Nystrom operator corresponding to the coarse grid.

Initial Guess: u%o)

r®) = — (A= K,)ulP
)R E=0,1,2,....
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Then
ugﬂ_l) = u1('Lk) + (M — ’Cm)_l()‘l — Kn)(un — u%k))'
Thus,
Uy — D = (A = K) (K — Ko) (, — ul®))
and
tn = ulY = [ = Ko) ™ (Ko — Ko)P (1t — 0.

Since KC,;, — K in a collectively compact fashion, for m large enough,

B = sup [[[(AL = Kin) ™ (K — K[| < 1.

n>m

Hence, as k — oo,

_ Eg1
Hun - ugzk—H)Hoo < ﬂm”“ﬂ - u%k 1)Hoo < (Bm) 2 Hun - U%O)Hoo — 0. (24.3)

24.2.2 Two-Grid Method: New Operator

Let
a=1t <ty < - <tme1=>b, m<n,

be a uniform partition of [a, b] corresponding to a coarse grid. Let X, be the
space of piecewise polynomials of degree < r — 1 with respect to the above
partition. Choose r distinct points v; j, j = 1,...,r in each of the subintervals
[ti,tiv1]. Let By, : Cla,b] — X, be defined by

(Prx)(vij) =x(vy), i=1,...,m, j=1,...,m

If the end points of [t;, t;11] are included in the set of interpolation points, then

Py € Cla,b] and P2 = P,,. Otherwise, P, can be extended to L*[a, b] and

P2 = P,, (see [AtGa83]). In both the cases, P,, — I pointwise as m — oc.
Define

T = PnKy+K.Pp— PpK,Pr.
The method starts with an initial guess w(lo) and proceeds according to the
scheme

r® = f — (A= K)o,
o =+ A= T,) "W, k=0,1,2,....

Then

T — K (up, — 0lF)).
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Thus,

Uy — 0FH) = (XTI —T,) YT — Pp)Kn(I — Pp)(uy — vl)
= My p(u, —o®).

Since P,, — I pointwise and K, — K in a collectively compact fashion, it
follows that, as m — oo,

Sup {| Mo, m| < IAT = Tn) THIIT = Prn)| sup [|(1 = Prm)Kn | = 0.

Hence, for m large enough, d,, = sup,s,, [[Mnm| < 1. Consequently, as
k — oo,

Hun - U1(mk+1)||oo < 5m||un - Ugg)Hoo < (5m)k+1”un - vy(zo)Hoo — 0. (24.4)

A comparison of (24.3) and (24.4) suggests that the number of iterates
needed to achieve a certain accuracy in the new method should be about half
as compared to the Nystrom method. It is validated by the numerical results
in the last section.

24.3 Modified Nystrom Method: Green’s Kernel

In this section we consider two-grid methods for an integral operator with
Green’s kernel. Since the kernel lacks differentiability properties along the
diagonal, it is necessary to modify the definition of the Nystrom operator. We
illustrate the basic principle by defining a modified Nystrom operator based
on the Simpson integration (see [AtSh07] and [Ku05]).

Let 0 = 51 < 83 < -+ < $p+1 = 1 be a uniform partition of [0,1] and let

1

h = s;41 — s; = — be the norm of the partition. The basic Simpson integration
n

is defined by

it h S; + S
/ g(t)dt ~ 5 <9(5i) + 49(7“) + Q(Si—i—l)) = S(g, si. Si4+1)

and the corresponding composite quadrature formula is given by

[t = 3 [ o 3 (st a0 )

2n+1

= Z Wy, 5 g(Tn,j),
j=1

1 2 1
where w,, - = —, jeven, wy; = -—, jodd, and
n 3n
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(-1

T Ty

j=1,....2n+1.

If g is four times differentiable, then

2n+1

’/ g(t)dt — Z“’m 9(7n.5)

Let IC be an integral operator with a kernel that is four times differentiable
in the second variable, and let

< Cllg™llch*.

s) =Y wn k(8,70 ;)2(Tn ;)
=1

be associated with the composite Simpson integration. Then, for = € C*[0, 1],
(K = Kn)zlloo < Clla™]loh®.

As a consequence, if the right-hand side f in (24.1) is sufficiently differen-
tiable, then
u — tp||se < ChY.

Consider the integral operator K given by

1
= / k(s t) z(t) dt, se]l0,1],
0
where

_fos(1—t) if 0<s<t<I1,
k(St)_{t(l—s) if 0<t<s<l.

The Green’s kernel described above is continuous on [0,1] x [0,1], but not
differentiable along the diagonal. In this case, for z € C2[0, 1],

I~ Kn)lloe < Clla® ] och?

and
I — oo < Ch?.

The order of convergence h* can be restored by modifying the definition of
the Nystrom operator in the following fashion.

For a fixed s € [0,1], let ks(t) = k(s,t), t € [0,1], and let s € [sq, Sq+1]-
We write

b n Si+1 s Sq+1
/ k(s a(t)dt = 3 / (ko) (t)dt + / (ko) (1)dt + / (ko) (1) dt.
Z;; Si Sq s

Let @ be the quadratic polynomial interpolating = at s,, s4+1 and 5‘1+—§m
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Knz(s) = S(kew, si5i41) + S(ksi,tg, s) + S(ksd, 5,tq11)-
i
- 2n—+1
Thus, K,x(s) = Y. Wy,;(8)z(1n.;), so, for x € C4a, b],
j=1
(K = Kn)lloe < Cllz™]|oh".
If the integral equation (24.1) is approximated by (A — K, )i, = f, then
| — i || oe < ChY.

Let X,, be the space of piecewise constant polynomials with respect to
the coarse partition

O=t1 <ta< - <tpy1 =1, m<n.

Let the interpolation points be the midpoints of [t;,t;4+1], and let P, :
Cla,b] — X,,, be the map defined by

t; +t; t; +t;
(pmm)(%):x(%), i=1...m.

T = PuKy+KnPm — PnKpDPrn.
The two-grid method starts with an initial guess 177(10) and then proceeds
according to the scheme

Define

F0) = f — (M = K)o,
D) — 50 (AT —T,,)" R k=0,1,2,....

Then, in exactly the same manner as before, it can be shown that
ltun — 0F]|oe — 0 as k — oco.

A two-grid method corresponding to the modified Nystrom operator is
defined in a similar manner.

24.4 Computational Cost

In each iteration we need to compute y*) = (M — Tm)_lf(k), that is, we need
to solve the following equation:

by (0 — (k).
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Since ~ R ~ R
Ty = PuKy + Kn Py — Py Prn,
we get
A P — P Koy = P,k
NI = Pn)y® — (I — P)K,Pry® = (I — P,,)7®).
Thus

N 1 N N
A Py ™) = PR Pry™ = S PR (I = Py ) Ko Py ™
=P,r® 4 % P Kn(I — Py,)i™.

This is a system of size m.
In the two-grid method corresponding to the modified Nystrom operator,
for each iteration we need to solve the following system of size m + 1:

(AT — K )y®) = 70,

Thus, the costs in both iteration schemes are comparable. However, the
numerical example in the next section shows that the number of iterates in the
new method is about half of the number of iterates in the Nystrom method.

24.5 Numerical Results

Consider the integral equation with Green’s kernel

u(s) — / k(s tyu(t)dt = <1— %) sin(rs), sé€0,1].

0

The exact solution is u(s) = sin(ws).

We choose m = 4, n = 512, and X,, is the space of piecewise constant
functions with respect to the coarse partition. The interpolation points are
chosen to be the midpoints of the subintervals, and the numerical quadrature
is chosen to be the composite Simpson integration. The ||.| is calculated as
the maximum value at 512 fine grid points. Tables 24.1 and 24.2 show a
comparison between the new method and the Nystrom and modified Nystrom
methods.

Remark 1. 1t is to be noted that in the case of a two-grid method defined

using the new method with the modified Nystrom operator, the error for the

7th iterate is of the order 10~!*, while the corresponding error in the two-grid

method with the modified Nystrom operator is of the order 1078, In the latter
3 ya 3 iterates to achieve an accuracy of 10~
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Table 24.1. The new method versus the modified Nystrom method.

k New Modified Nystrom New Modified Nystrom
llun — Tr| l|un — g | l|u — Tyl llu — i |

1 1.4 x1072 6.9 x107 ! 1.4 x1072 6.9 x10~ T

2 9.3 x10°° 5.7 x10~° 9.3 x107° 5.7 x10~2

3 5.9 x10~7 2.7 x1073 5.9 x10~7 2.7 x1073

4 3.7 x107° 2.3 x107% 3.7 x107° 2.3 x107 1%

5 2.3 x107 11 1.1 x10™° 4.3 x107 11 1.1 x107°

6 1.5 x10~13 9.4 x10~" 4.3 x10~ 1T 9.4 x10~ "

7 2.0 x10714 4.3 x107° 4.3 x10711 4.3 x107°

Table 24.2. The new method versus the Nystrom method.

k New Nystrom New Nystrom

[[un — vp] [[tn — ug | llu—opll [l — gl
1 1.4 x10~ 2 7.8 x1072 1.3 x10~? 7.8 x10™2
2 9.3 x107° 1.4 x1072 9.3 x10~° 1.4 x1072
3 5.9 x10~"7 1.8 x107% 7.7 x107° 1.8 x10~%
4 3.7 x107° 1.4 x107° 7.7 x107° 9.5 x107°
5 2.4 x107 1 3.0 x10~7 7.7 x107° 8.0 x107°
6 1.5 x10~ 13 1.5 x10~ % 7.7 x107° 7.7 x107°
7 2.0 x10~ ™ 4.3 x1071° 7.7 x107° 7.7 x107°

Remark 2. If we compare the iterates with the exact solution, the error in
the two-grid methods defined with the usual Nystrom operator remains 1079,
whereas the modification reduces this error to 1011,
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25.1 Introduction

In this chapter we present a brief account of possible finite element meth-
ods (FEMs) for the plate bending problem, when described by means of the
Reissner—Mindlin model. We point out that the following overview is far from
being exhaustive: we are perfectly aware that many important approaches are
not even mentioned. Accordingly, also the references are very limited and lack
completeness.

The choice of schemes that are going to be described is strongly biased
by the author’s experience, and it does not correspond to any efficiency or
robustness criterion. We also remark that we are not going to detail any
rigorous convergence and stability proof. Rather, we will try to heuristically
explain

1. the main troubles arising from the FEM discretization of plate problems
(Section 25.2);

2. why the methods under consideration succeed in the solution approxima-
tion (Section 25.3).

25.2 The Reissner—Mindlin Plate Model and Its FEM
Discretization

25.2.1 The Reissner—Mindlin Plate Model

The Reissner—Mindlin equations for a clamped plate with a convex mid-
plane domain {2 require us to find (6, w) such that (see, for example, [Ba95]
or [Hu87])

—divCe(0) — M7 2(Vw —0) =0  in £,

—div (A (Vw —0)) =g in £2, (25.1)
0=0, w=0 on 942.
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In (25.1), ¢ is the plate thickness, A is the shear modulus, and C is the tensor
of bending moduli, given (for isotropic materials) by

E

Cri= ol

1 —v)r +vitr(r)I], (25.2)

where 7 is a generic second-order symmetric tensor, tr(7) its trace, I is the
second-order identity tensor, and E and v are the Young modulus and Poisson
ratio, respectively. Moreover, 6 = (6, 62) represents the (vector) rotation field
and w is the transversal displacement (see Figure 25.1), while ¢ is a given
transversal load. Finally, V is the usual symmetric gradient operator.

0 ¢
) <

Fig. 25.1. Reissner-Mindlin kinematic variables.

Introducing the space © x W = (HE(£2))? x H}(£2), it is easily seen that
problem (25.1) can be reformulated as the following minimization problem
over © x W for the elastic energy Ej:

Find (0,w) € © x W which minimizes

-2 25.3
Ei(n,v) :I%/QCE(H):E(??HN; /QIW—TIIL/ng. (25:3)

From a mechanical viewpoint, the term % /, o Ce(n) : £(n) represents the bend-

ing energy, the term MT_Q [ Vv —n|? gives the shear energy, and [, gv is
the external load work. A standard computation leads to the Euler-Lagrange
equations associated with problem (25.3):

Find (0, w) € © x W such that

| , e [ (25.4)
/905(0).5(77)“75 /Q(Vw 0) . (V n)—/ﬂg

for every (n,v) € © x W. We remark that, for every fixed ¢ > 0, the bilinear




25 Plate Finite Element Methods 263

/ Ce(0) : () + M2 / (Vw - 6) - (Vo — 1)
(P

Q
is continuous, symmetric, and coercive over © x W. Moreover, for g smooth,
v — f o gv is a linear and continuous functional over W. Therefore, prob-
lem (25.4) is elliptic and the Lax—Milgram lemma implies the existence,
uniqueness, and stability of its solution.

The ellipticity of the problem suggests to consider Galerkin discretization
techniques for the solution approximation. Among them, the FEM is a very
popular and flexible choice (see, for example, [Ci78]). We briefly recall that
a conforming finite element procedure for our plate problem is based on the
following steps.

o Mesh generation. Construct a decomposition 7Tj of {2 into triangular el-
ements 1. The mesh size h, defined as the maximum diameter of all the
triangles in the decomposition, is an important geometric parameter. The
mesh is typically required to fulfill some compatibility conditions. A typ-
ical mesh is displayed in Figure 25.2. We also remark that quadrilateral
elements may be used as well.

h = max{diam(T)}

Fig. 25.2. A typical triangular mesh.

e Local approxzimation. For each T in the mesh 7Tp, introduce P(T'), a poly-
nomial space on T'. Different choices for different elements may be made.
However, the most common choice consists of selecting the same shape
functions for every element.

e Finite element space. Form the discrete space

@h x W, = {(nh,vh) cOxW: (nh,vh)|T S P(T)}

For instance, one could select piecewise linear and globally continuous func-
tions for both rotations and vertical displacements. This choice is schemat-
ically depicted in Figure 25.3. Here the bullets mean that the relevant
unknown is uniquely determined by assigning the values at the triangle

ol Lal Zyl_i.lbl
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Fig. 25.3. The simplest FEM space.

e Discrete problem. Solve the problem
Find (Gh,wh) € Oy x W, s.t.

/n Ce(6n) : <(m) + At~ /Q(th —0h) - (Vop, —mp) = /ngh (25.5)

for every (np,vp) € Op x W,

25.2.2 Locking Effects and Spurious Mode Occurrence

Since the problem is elliptic for each ¢t > 0, the standard theory gives optimal
error estimates for the discrete solution (6, wy) € Op, X W, as the mesh size
tends to zero (see [Ci78] or [BrFo91], for instance). In practice, this means
that reasonable outcomes are expected when using a mesh as in Figure 25.2,
and the approximation spaces as in Figure 25.3. However, for a “small” thick-
ness the discrete solution heavily underestimates the analytical solution (see
Figure 25.4 for a pictorial representation of this occurrence, when the plate is
clamped and subjected to a constant load).

Discrete solution

Analytical solution
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To understand this bad phenomenon, known as the shear locking effect
(see, e.g., [BrFo91]), it is worth considering the asymptotic behavior of the
problem as ¢ — 0. More precisely, it can be proved that problem (25.3) con-
verges, in a suitable sense, to the limit constrained problem (see, for exam-
ple, [SaPa92] or [ChPa94])

Find (6°,w") € K which minimizes

Eo(n,v) = %/906(17) ce(n) _‘/ng’ (n,v) € K, (25.6)

where K is defined by
K ={(n,v) € @ xW :Vv=n}. (25.7)

Even though we will not detail the convergence proof, we point out that
the constraint (0°,w®) € K is very reasonable. Indeed, in minimizing the
functional E,(-,-) in (25.3) for very small t, one should choose functions (7, v)
such that

/ |Vo —n|? is “very small”  (which means Vo — 1 is “very small” );
fo)

otherwise, one pays an enormous amount of shear energy in the term

At 2 9
5 /Q|Vv—77|.

We also remark that problem (25.6) is coercive and continuous on K. Further-
more, K is a non-trivial closed subspace of © x W. Indeed, given any com-
pactly supported smooth function v, one may set n := Vov. By construction,
(n,v) € K. Therefore, the continuous limit problem (25.6) may be thought of
as a standard well-posed (elliptic) problem.

We now turn our attention to the discrete problem. The discrete prob-
lem (25.5) is equivalent to a minimization problem for the same functional
E;(-,-) (see (25.3)), but restricted to @), x Wy, i.e.,

Find (0, wy) € O, x Wj, which minimizes

1 A2
Ey(nn,vn) 125/905(77h)¢5(77h)+ 5 /Q|V7)h_"7h|2_/ngvh-

(25.8)
Therefore, the FEM problem converges, as t — 0, to the discrete limit problem

Find (69,wY) € K;, which minimizes

EO(nha’Uh) = %/QCE(T}}L) : 5(77h) _ /Qg,vh’ (nh,'Uh) €Ky, (25.9)

ol Lal Zyl_i.lbl
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Ky, = {(nh,vh) €9, x Wy : Vo, = 77h} =Kn (@h X Wh). (25.10)

We remark that the discrete limit problem accounts for minimizing the same
limit functional as for the continuous problem (see (25.6)), but this time on
the discrete subspace Kj,.

Let us analyze the structure of K}, when using piecewise linear and glob-
ally continuous functions (see Figure 25.3). If (9, v) € Kj, then Vo, = np,
(see (25.10)). Since n, € C°(£2), we deduce that v, € C1(£2). But vy, is also
piecewise linear, so v, € C*(£2) implies that vy, is a globally linear function
in (2. If the plate is clamped on a part of the boundary of positive length, we
then infer that vy = 0. Recalling that n, = Vo, we finally deduce that

(Mh,vn) € Op x Wy, = (nn,vn) = (0,0),

ie., K, ={(0,0)}. Therefore, the limit problem (25.9) is just a minimization
problem for a “good” functional, but on a trivial space: the minimizing pair
is surely (0, wp) = (0,0)!

Of course, this is the limit “zero thickness” situation; however, for a “small
thickness” (with respect to the mesh size h), the discrete problem is essentially
so close to the limit case that the discrete solution is very small: shear locking
has occurred.

Since the trouble stands in the shear energy term, a possible cure con-
sists in reducing, somehow, its influence at the discrete level. This can be
accomplished by considering the modified energy

-2

1 At
En+(nn,vn) = 3 /n Ce(np) : e(nn) + 5/, Ry (Von, —mn)|? — /” gUh,

where Ry, is a suitable reduction operator. Therefore, the finite element scheme
now reads, in its equivalent minimization formulation,

Find (8, wp) € O x W), which minimizes

1 At—2
Eh,t(nhavh) =z /_Q 05(%) : E(nh) + L |Rh(vvh - 7]h)|2 - /Q gup.

2 2
(25.11)
As t — 0, the problem will consequently converge to the problem
Find (69, w)) € K}, which minimizes
1 (25.12)
B o(1hs vp) = 5/ Ce(nn) : £(nn) —/ 9Vhs (M, vn) € Kp,
Q Q
where K}, is now defined by
Ky, = {(nh,vh) €O x Wy : Rh(Vvh — nh) = 0}. (25.13)

We point out that now the constraint has been relaxed to Ry, (Vv —n) = 0,
andpwesdon’tyhavesVup—iims=s0sanyinore. As a consequence, one may hope
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that K is large enough to properly approximate the subspace K (see (25.7)),
thus preventing shear locking effects. However, the reduction operator Rj
must be carefully selected. Let us consider the following (not recommended)
choice.

For the approximation space @) x W}, we select piecewise quadratic and
globally continuous functions, as schematically depicted in Figure 25.5.

Fig. 25.5. Quadratic approximation.

We choose Ry as the L2-projection operator onto the piecewise constant
(vector-valued) functions. In can be proved that there is v; € W), for which
Vv # 0 but Ry, (Vvy) = 0. Computing the energy Ej, 4(-, -) along the direction
given by (0,vy) € Oy x Wp,, we get (see (25.11))

A2
En(a(0,v;)) = / o Ry (Vui)|* — a/ gup = —a/ gup Va eR.
2 Jo o Q

Therefore, the functional Ej, (-, -) is linear along that particular direction. As
a consequence, no minimizing pair (65, w;) € O x W}, can be found, since
ellipticity has been lost at the discrete level. From a practical point of view,
one obtains a singular stiffness matrix. Of course, this is an extreme situation.
However, even when the stiffness matrix is invertible, a naive choice of the
reduction operator Rj may lead to a milder, though nasty, phenomenon: the
occurrence of spurious modes, i.e., the discrete solution exhibits non-physical
heavy oscillations.

Obviously, to avoid the existence of v; € Wj such that Vov; # 0 but
R, (Vuy) = 0, one would like to choose Rj, = Id, the identity operator. How-
ever, this choice will lead to trouble, again with the shear locking.

To summarize, we need to reduce the influence of the shear energy term,
but

e If Rj reduces “too much,” we risk spurious modes occurrence.
e If R, does not reduce “enough,” we risk shear locking effects.
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Balancing Rj is not a trivial task. However, nowadays there are several
efficient options in the literature. Some of them are briefly reviewed in the
following section.

25.3 Some Efficient Finite Element Techniques

25.3.1 MITC Elements

We now describe one of the most popular and efficient strategies to ap-
proximate the solution of the Reissner—-Mindlin plate equations: the so-called
Mixed Interpolation of Tensorial Components ( MITC') elements (see [BBF89],
[BFS91], but also [TeHu85] and [Du92], for example). We here focus on a par-
ticular low-order element, but higher-order, as well as quadrilateral versions,
are available. The scheme under consideration, known as the MITC7 element,
consists in making the following choice.

e To approximate each rotational component, we select piecewise quadratic
and globally continuous functions. In addition, a local cubic bubble is
inserted.

e To approximate the vertical displacements, we select piecewise quadratic
and globally continuous functions.

To complete the element description, we need to specify the reduction
operator Ry. To this end, for each triangle T we introduce the vectorial space

I(T) = (Pi(T))* + Py(T)(y, —)",

where P;(T') denotes the space of linear functions on 7T'. It can be proved that
a function in I'(T) is uniquely determined by assigning

e the moments up to the first order of its tangential component, for each
edge of T' (6 degrees of freedom);
e its mean value over T (2 degrees of freedom).

For a given smooth vectorial function § = (1,d2), we then define R,6 by
requiring that

(Rpo)ir € I'(T),

/Rh5_/5 (25.14)

/ [(R»5) - t]p1 (s)ds — / 15 - t]pr (s)ds,

e

for every triangle T € Tj, and every edge e of T. Above, t is the tangent
vector to the side e, while p;(s) is a linear polynomial with respect to a local




25 Plate Finite Element Methods 269

R,

Fig. 25.6. The MITC7 element.

coordinate s along e. All these choices and definitions are schematically shown
in Figure 25.6.

The MITC7 element, as well as all the other schemes based on the MITC
philosophy, is carefully designed to fulfill the following crucial features.

e P1. Ry is the identity operator when applied to the gradients of discrete
vertical displacements, i.e.,

RyVvy, = Vv, Yo, € Wy,

o P2. If curl Rynp = 0, then Rp7n is the gradient of a discrete vertical dis-
placement, i.e.,

{Rpn : ne (HHN))?, curl Rpny = 0} = V.

(Above and in what follows, the curl operator is defined as
curl p = dpo /0x — Op1 /0y,
for a generic vector-valued function ¢ = (1, p2).)

There exists an auxiliary space @y such that (for the MITC7 element, this
space consists of the locally linear functions, with no continuity requirements
across the element interfaces):

e P3. The “commutative diagram property”
curl Ryn = Pyeurly, n e (HYH(2))?,

holds, where Py, : L? — @y, is the L? projection operator.
e P4. The pair of spaces (O, Q) is stable for Stokes-like problems.
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We now comment on the properties above. We first notice that the very im-
portant property P1 prevents the scheme from suffering from spurious modes.

To see which is the role played by the other properties, we focus on the limit
problem, as t — 0. As detailed in Section 25.2.2; this accounts for considering
the problem (see (25.6)—(25.7)):

Find (6°,w°) € K which minimizes

1 (25.15)
EO(na U) = 5/ CE(TI) : 5(7]) _/ gqv, (TIaU) € Ka
0 o)
where
K={(nv)€e®xW : Vv=n}. (25.16)
The discrete counterpart reads
Find (69, w)) € K;, which minimizes
1 (25.17)
Eo(nn,vn) = 5/ Ce(nn) = e(nn) —/ gvn (Mhsvn) € Kp,
0 Q
where
Ky = {(nn,vn) € Op x Wy, : Vo, = R} (25.18)

Roughly speaking, problem (25.17) has a chance to be a “good approxima-
tion” of problem (25.15), for all loads g, only if K}, is a “good approximation”
of K. This means that, given (n,v) € K, we need to find (n;,v;) € K}, such
that

nrRn, v R (25.19)

Above, n &~ n; means that some suitable norm of 1 — 7; vanishes as the mesh
size h tends to zero. The same remark applies to v; ~ v, of course.

If (n,v) € K is sufficiently regular, the most natural choice would be to
take n; and v; as the usual Lagrange interpolants of n and v, respectively
(if (n,v) € K is less regular, one might think of the Clément’s interpolants,
see [Ci78]). Unfortunately, even though Vv = 7, in general it is not true
that the choice above leads to a (ny,vy) such that Vor = Rpny. Therefore,
(nr,vr) € Kp, and a more sophisticated and subtle choice needs to be made,
as sketched below.

Fix (n,v) € K. We first consider the discretization of the Stokes-like prob-
lem:

Find (n7,pn) € O X Qp, such that

/ Ce(nr) : e(xn) +/ ppcurl xp, = / Ce(n) : e(xn); Xn € O,
o Q o

/ qn curlny =0, qn € Q-
o)

o (25.20)
ﬁ”JmNZUL*I
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nr=n, Ppeurlnr = 0. (25.21)

Such a n; € © will be our approximation of n € ©. We now need to construct
a suitable vy € Wj. From (25.21) and property P3 we get

curl Ryn; = Ppeurlnyy = 0. (25.22)
Property P2 then implies that there exists v; € W}, such that
V’UI = Rh7]1. (25.23)

Therefore, it holds for (n;,vr) € K. In addition, since it holds for n; = 7
(see (25.21)), it follows that

Ryny =~ n= V. (25.24)
Since Rpnr = Vur (see (25.23)), from (25.24) we deduce that
Vo ~ Vo, (25.25)

which implies that v; ~ v.

To summarize, using properties P1-P4, we have been able to find, for
a given (n,v) € K, a pair (n;,v;) € Kj such that (n;,v;) =~ (n,v). This
heuristically explains why the MITC elements are efficient.

Coming back to property P4, we point out that the connection between the
Reissner—-Mindlin problem and a Stokes-like problem is much deeper. Indeed,
introducing the Helmholtz decomposition for \t=2(Vw — 6), that is,

M2(Vw —0) =V +curlp, o€ Hi(2)=W, pcH}(2)/R, (25.26)
the plate problem (25.4) can be rewritten in the equivalent form (see [BrFo86))
( Find (0, w;p,p) € © x W x W x H}(£2)/R such that

/V@-Vv:/gv Yv e W,
Q Q

/Q Ce(8) : e(n) — /Qpcurln = /QVQO -n Vne€o, (25.27)
—/ qcurlH—)\_ltz/ curlp-curlg =0 Vg € Hj(2)/R,
Q Q

/ Vw-wz/ 9-V¢+/\_1t2/ Vo -V YipeW.
N J I?) Io)

Above and in what follows, the curl operator is defined as
curlg = (8q/dy, —8q/x)",

for a generic scalar function ¢. Problem (25.27) reveals that the Reissner—
ndlin plate problem can ecomposed into
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1. An elliptic problem for ¢ (the first variational equation);

2. A singularly perturbed Stokes-like problem for (0, p) (the second and the
third variational equation);

3. Another elliptic problem for w (the fifth variational equation).

In light of this reformulation, it should not be surprising that a Reissner—
Mindlin element may contain ingredients peculiar to the mixed finite element
machinery for the Stokes problem approximation.

25.3.2 The Arnold—Falk Element

We now present a triangular scheme which heavily exploits formulation (25.27)
for the plate problem: the Arnold-Falk element (see [ArFa89]). This element
is based on the following choices.

e Oy each component of the rotation field is approximated by means of
piecewise linear and globally continuous functions. In addition, a local
cubic bubble is inserted per each triangle in the mesh.

o WW},: the vertical displacements are approximated by means of locally linear
functions, which are continuous across adjacent elements at the edge mid-
points (called the non-conforming Py element). It is easily seen that this
approximation field is obtained by assigning its values at the edge mid-
points.

The element is schematically shown in Figure 25.7.

JANRA

w

Fig. 25.7. The Arnold-Falk element.

Furthermore, we select Rj, as Py, the projection operator on the piecewise
constant functions. Introducing the element-wise gradient operator Vj, and
noting that PyVyv, = Vuy, for any v, € Wy, the discrete problem then reads

ol Lal Zyl_i.lbl
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Find (65, wp) € Op, x W, which minimizes

1 At2
Eh+(nn,vn) = 3 /QCE(??h) ce(nn) + 5 /Q \Vhon — Ponn|* — /ngh.

(25.28)

The key point is to recognize that the piecewise constant function \t—2

(Vywy, — Pof) admits a discrete Helmoholtz decomposition (see (25.26)) as
follows:

)\t_Q(Vhwh — Rhe) = Vwpn +curlpy, ©n € Wy, pp € Qn, (25.29)

where ), is the space of piecewise linear and globally continuous functions.
The discretization spaces for ¢y, and p;, are depicted in Figure 25.8.

/N

?h Ph

Fig. 25.8. Auxiliary spaces for the Arnold—Falk element.

Using that decomposition in the Euler-Lagrange equations emanated from
problem (25.28), we get the variational system

Find (0n, wh; ¢n,pn) € On X Wi, X Wi, X Qp, such that

/Vh<Ph'vhUh:/ GUh
0 7
Ce(6y) : e(n f/pcurln :/V SN,
/Q (0n) = (1) Pn =],V nen T (25.30)

- / qr curl @y, — )\_lt2/ curlpp, - curlgp, = 0,
Q Q

/Vhwh‘vh¢h:/ 9h‘V¢h+/\_lt2/ Vren - Vetbn,
S J0 n n

for every (nn, Vn; ¥n,qn) € On X Wy, x Wy, x Qp,. Therefore, the Arnold—Falk
scheme is equivalent to

1. Discretizing a Poisson problem by means of W}, the space of non-
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2. Discretizing a Stokes-like problem using the pair © X @y, which is the
popular and stable MINT element (see [BrFo91], for instance).
3. Discretizing a further Poisson problem, still using Wj,.

Since all the choices above are stable and convergent for the corresponding
problems, the Arnold-Falk element results in a good approximation scheme
for the Reissner—Mindlin plate problem.

25.3.3 Linked Interpolation Technique

We now describe a technique which has become quite popular, especially
among the engineering community: the linked interpolation technique (see
[AuTa94], [AuLo01], and [Lo98], for example). The main idea consists in im-
proving the vertical displacements by using the rotational degrees of freedom.
More precisely, the basic steps of this strategy are the following.

e Select finite element spaces @, and W}, as usual.
e Introduce a suitable linear operator (the linking operator)
Ly : 6, — HY(0). (25.31)
e Form the finite dimensional subspace of © x W :
Xn = {(h,v3) = (h,vn + L) < p € O, vp € Wi} (25.32)
e Consider the discrete problem

Find (0, w},) € X;, which minimizes

o1 At—2 .
Eh,t(nh,vh)I—/QCE(nh):E(nhH 3 /Q|Ph(vvh_77h)|2

2
_/ g'U;;,
(9}

where P, is typically a suitable L2-projection operator.

(25.33)

The role of the linking operator Lj should be to help relax the constraint
which causes locking effects. To give an example, we consider a triangular low-
order element which corresponds to the following choices (see Figure 25.9).

e Oj: each component of the rotation field is approximated by means of
piecewise linear and globally continuous functions. In addition, a local
cubic bubble is inserted per each triangle in the mesh.

o W the vertical displacements are approximated by means of piecewise
linear and globally continuous linear functions.
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0 w

Fig. 25.9. Approximation of rotations and deflections for the lowest-order linked
interpolation scheme.

The linking operator Ly, : ©), — HL(£2) is defined as follows. For each
T €Ty, we set

@i =AjAx and  EB>(T) = Span{pi} ;<3 » (25.34)

where {);}1<,<3 are the barycentric coordinates of the triangle 7' and the
indices (%, j, k) form a permutation of the set (1,2,3). Then, the operator Ly,
is locally defined as

3
Lnnyr = Y ups € EBo(T), (25.35)
i=1

where the coefficients «; are determined by requiring that

(VLpnp —np) -t is constant on each e. (25.36)

Above, t denotes the tangential vector to the edge e. Therefore, a generic
vy = vp+Lpnn (see (25.32)) is indeed a locally quadratic function. Finally, the
operator P, introduced in (25.33) is chosen as Py, the L2-projection operator
over the piecewise constant functions.

The linked interpolation technique has some strong connections with the
MITC elements described in Section 25.3.1. To see how this can occur, let us
consider the term Vuj — 7, in (25.33). Recalling (25.32), we get

Vo —nn = V(vn + Lann) — nn = Vou — [np — V.Lan].

The vector np, —V L7y, is often very similar (and sometimes even identical)
to Rpnp, where Ry, is exactly the reduction operator of Section 25.3.1. For
more details, the interested reader may see [Ly00].

25.3.4 PSRI Technique

The partlal selective reduced 1ntegrat10n (PSRI) technique is based on a suit-
able splitting ) Al e1e ermy(see [ArBr93]). We illustrate the idea in
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the easiest possible case: we first choose a real parameter o, with 0 < o < ¢72.
We then introduce finite element spaces @, and Wy, together with a reduction
operator Rjy,. We finally consider the discrete problem:

Find (0h,wp) € Op x W, which minimizes

Eni(nn,vn) = % /Q Ce(nn) = e(nn) + )\704 ‘/Q [(Von — nh)|2 (25.37)

At 2 -«
+ %/ |Ri(Von, — ) [? —/ GUp.
0 N

Therefore, the shear energy term has been split into two parts, the first of
which is ezactly integrated, while the second one is reduced by means of Ry,.
The advantage of this formulation stands in the fact that the term

5 [ cetm)ietm)+ 35 [ (Vo= )P

0 Q

is always coercive over the whole space © x W. As a consequence, spurious
modes cannot occur independently of the chosen @) and W), spaces. With
respect to the original discrete formulation (25.11), we now have much more
flexibility in the choice of the approximation spaces. For instance, we could
now reconsider the following element (see [Lo96]).

e O and Wp: both rotations and vertical displacements are discretized by
means of piecewise quadratic and globally continuous functions (see Fig-
ure 25.10).

e Rj, = P,, the L?-projection operator on the piecewise constant functions.

A

Fig. 25.10. Approximation of rotations and deflections for a low-order PSRI
scheme.

This element shares the same degrees of freedom for all the kinematic
variables, a feature which may be favorable for a possible extension to shell
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The main drawback of this approach is the presence of the parameter «
to be chosen by the user. We point out that a cannot be arbitrarily selected.
Indeed, looking at the modified shear energy (see (25.37))

A(t2

—_OZ)/Q|Rh(V’Uh_77h)|27

Aa 9
7/Q|(Vvh_77h)| + 5

one easily realizes the following.

o If ais “too small,” we are essentially reducing the whole shear energy.
Hence, spurious modes will likely occur.

o If ais “too large” (i.e., close to t~2), we are essentially neglecting the effect
of the reduction operator. Hence, the shear locking phenomenon will likely
occur.

However, some numerical evidences reveal that the PSRI technique is
quite robust with respect to the parameter choice (see [ChL095] and [AuL099)).
Therefore, one does not expect dramatic consequences even though one misses
the “optimal” « (whatever “optimal” means in this context). We finally re-
mark that one could set « varying from element to element, also selecting
the local value «(T) as a function of the size of the current element T'. This
kind of choice sometimes leads to an improved performance of the scheme at
hand. For more details on this point, as well as other similar techniques in-
spired by the least-squares augmented formulations, see [ChSt98] and [St95],
for instance.

25.3.5 Non-Conforming Elements

Recently, the development of discontinuous Galerkin (DG) methods for el-
liptic problems have also suggested new approaches to the Reissner—-Mindlin
plate problems: non-conforming and DG-based elements have been designed
and analyzed (see [ABM], [BrMa03], and [Mi01]). We however remark that
a non-conforming element has already been presented in connection with the
Arnold-Falk scheme (see Section 25.3.2), but only for the approximation of
the vertical displacements.

We here focus on a “fully” non-conforming low-order triangular element
stemming from the following choices, as proposed, analyzed, and numerically
tested in [Lo05] and [CLMOG6].

e O and Wp: all the kinematic variables are approximated by means of
locally linear functions, which are continuous across adjacent elements at
the edge mid-points (non-conforming Py element, see Figure 25.11).

e Rj, = Py, the L?-projection operator on the piecewise constant functions.
Notice that Py(Vyjv,) = Vyuy, for every v, € W, which prevents the
occurrence of spurious modes.
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Fig. 25.11. Non-conforming element.

Then, the discrete problem reads
Find (6p,wp) € O x Wp, which minimizes

1 At2 (25.38)
Ent(np.vn) = Eah(nhﬂ)h) + > /Q \Vhvn — Ponn|* — /ngh-

Above, the bilinear form ay (-, ) is defined by

K
wn(0) = [ Con@):entm+ Y 7 [10): 1o (25.39)
e ecéy, €
where
e ¢; denotes the element-by-element symmetric gradient operator,
e [ is the jump operator,
o &, is the set of edges e of Ty,
o |e| denotes the length of e,
® K. is a positive constant to be chosen.

We remark that k. must match the physical dimensions of C. Therefore, a
possible and highly reasonable choice is k., = |C|, where |C| is some norm of
C. We point out that the jump term in (25.39), typical of the DG machinery,
is necessary for stability: the term | 0 Cen(0n) : en(nn) alone is not positive
definite on the non-conforming space @j,. In Figure 25.12 we display a rotation
field 7, € @), such that f() Cepn(np) : en(nn) = 0 but ny, # 0.

We also notice that the form ap(-,-) in (25.39) is a strongly consistent
modification of the original form [, Ce(-) : (). In fact, computing as(-,-)
on smooth functions 6,7 € (H}(£2))?, the jump term vanishes and one has
an(0,n) = [, C=(0) : =(n).

We now give a hint on why this approach gives rise to a locking-free scheme.
For ¢ — 0, problem (25.38) becomes
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Fig. 25.12. Rotational spurious mode.

Find (69, w)) € K, which minimizes

1 (25.40)
Eno(nh,vn) = §ah(77h,77h) - /ngh,

where
Ky, = {(nh,vh) €O x Wy : Vyon — Po’l]h = 0} . (25.41)

Recalling the mid-point integration formula, one deduces from (25.41) that
(nn,vn) € Kp means that the constraint Vv, = np, is imposed only at the tri-
angle barycenters, and not everywhere. Together with the continuity require-
ment only at the edge mid-points (see Figure 25.11), this makes the space Kp,
large enough to approximate the continuous space K defined in (25.7).
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Influence of a Weak Aerodynamics/Structure
Interaction on the Aerodynamical Global
Optimization of Shape
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RWTH-Aachen, Germany; nastase@lafaero.rwth-aachen.de

26.1 Introduction

The aim of this chapter is to perform a multidisciplinary aerodynamical global
optimal design (OD) and to find the shape of a flying configuration (FC) that
has high aerodynamical performance (a high ratio of L/D (lift to drag)) and
also satisfies the requirements of the structure.

The global aerodynamical OD tries to determine the shapes of the external
surface of an FC and of its planform in order to obtain high aerodynamical
performances, and the structural OD tries to obtain a structure with mini-
mal weight, inside this surface, with satisfactory stiffness. A certain degree
of independence and also a certain interdependence occur between the global
aerodynamical and structural ODs of the shape of the FC, which must be
harmonized in order to obtain an FC with high aerodynamical performance
which also satisfies all the requirements of the structure. In what follows we
propose a weak aerodynamics/structure interaction via new and/or modified
constraints that are required from a structural viewpoint.

26.2 The Three-Dimensional, Hyperbolic, Potential
Solutions

In some previous papers [Na73], [Na86], and [Na07], the author has proposed
some three-dimensional, hyperbolic, potential solutions for the computation of
the axial disturbance velocities over several wings such as delta, rectangular,
trapezoidal, and FCs such as wing—fuselage, wing—fuselage with leading edge
flaps, etc. (all with arbitrary camber, twist, and thickness distributions), in
inviscid supersonic flow. All these analytical solutions are written in closed
(integrated) forms, have well-suited singularities, which are located only along
the singular lines, and are easy to use for the computation of the inviscid
aerodynamical characteristics and for performing the inviscid global OD of
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the shape of the FC. All these solutions are deduced by means of Carafoli’s
hydrodynamic analogy and van Dyke’s minimum singularities principle, so
they are matched, in the first approximation, with the Navier—Stokes layer
(NSL) solutions.

The integrated wing—fuselage (IWF) is taken here as an example. The
wing—fuselage (WF) is an FC whose wing has a central fuselage zone and
is treated here as a wing alone, the surface of which is discontinuous along
the junction lines between the wing and the fuselage. The junction lines are
mathematically simulated as two artificial ridges. The IWFs are such WFs,
with continuous mean surfaces; the thickness distributions on their wings and
on their fuselage zones have the same tangent planes at each point of their
junction lines but can be discontinuous in their higher derivatives. First, we
introduce some dimensionless coordinates, namely

X1 ~ x2 ~ Zs3
— To = — I3 = —
hi’ 0’ hy’

/
<9=%, 6:2—17 ¢c=+, v=Bl, v=Bc BZVM&_l)'
1

hi

Ty =

Here, ¢; and ¢’ are the maximal half-span of the wing and of the fuselage
zone, hy and £ are the maximal depth of the IWF and the dimensionless span
of the wing, v and U are the similarity parameters of the planform of the wing
and of the fuselage zone, and the quotient k¥ = /v depends on the purpose
of the supersonic FC.

The downwashes w and w*, w'* on the thin and thick-symmetrical IWF
components, respectively, are expressed as

N m—1
_ - ~m—1 - e
w=b=Y FD timk-1kdl
m=1 k=0

on the entire thin IWF (i.e., —1 < § < 1, k = 7/v with 7 = Be), as

N m—1
* =k ~m—1 ~ % ~k
w o =w = E :331 E wm—k—l,k|y|
m=1 k=0

on the parts of the thick-symmetrical component corresponding to the wing
of the IWF (i.e.,, -1 < g < —kand k < § < 1), and as

m—1

N
1% —% ~m—1 — % ~1k
wo=w = Z Ty Z Wpy—k—1,k ]
m=1 k=0

on the central part of the thick-symmetrical IWF component corresponding
to the fuselage (i.e., |§| < k).

The corresponding axial disturbance velocities u and v* on the thin and,
respectively, thick-symmetrical components of the thick, lifting IWF with sub-
soniegeadinggedgesp(izespa<splymfitted with two lateral artificial ridges (that
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simulate the jump of the higher derivatives of the axial velocity along the junc-
tion lines WF) and also fitted with a central ridge, as in [Na86] and [Na07],
are

E(%) -
3) 4,207

N

u=1/ !
nz::l ' q=0 Vl_g2 q=1
u* —EZ”‘ ! Z 7 (cosh™ V' M, + (—1)%cosh™! M)

(2 :
- Z Dn2q~2q 1—v2y? + Z n2q ¥ 5?7 cosh™! V22

+ ZGW@? (cosh™ S; + (~1)%cosh™' Sy)

)

where
A4+ —vy) A4+ v) (A +vy)
VT 0 T Tmae
o 0w o [0raiTw

2(v —vy) 2(v + vy)

The coefficients of the axial and vertical disturbance velocities are related
through Germain’s compatibility conditions, which are linear and homoge-
neous relations with respect to the coefficients of the downwashes. On the
upper side of the IWF, we have u, = —u + u*.

In a modern concept, these solutions are used twice: as outer solutions, at
the edge of the NSL, and to reinforce the numerical solutions, inside the NSL.

26.3 NSL Spectral Forms of the Physical Entities

We introduce the spectral coordinate

n= (w3 — Z(w1,72))/6(x1, 72).

Here, Z(x1,x2) is the equation of the upper surface of the FC and § is the
thickness of the NSL. Inside the NSL, the range of nis 0 < n < 1, as desired.

We propose the following spectral forms for the velocity components, the
density function R (defined here as R = lnp), and the absolute temperature
T (see [Na02, Na04], and [Na07]):
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N N N
Us = Ue § uin, Vs = Ve § v, Ws = We § wit,
i=1 =1 1=1

N N
R=Ry+(Re—Ry)Y rin', T=Ty,+(T.—Tu)> tm',  (26.1)

=1 i=1

where R,, and T, are the values of R and T at the wall and u., ve, we, Re,
and T, are the edge values of us, vs, ws, and R, T, obtained from the outer
inviscid flow at the edge of the NSL. The spectral coefficients u;, v;, and w;
of the velocity components ugs, vs, and wgs, and the spectral coefficients r;
and t; of the density function R and the absolute temperature T are used
to satisly exactly the partial differential equations (PDEs) for the NSL at a
finite number of points. By using the physical gas equation (i.e., the equation
of a perfect gas), we find that the pressure p inside the NSL is expressed as
a function only of the absolute temperature T and of the density function R;
specifically,

p=RypT = RyeT . (26.2)

The viscosity p depends only on the temperature 7. An exponential law
is accepted, namely,
T\™
= — , 26.3
=i (7 (263)

where R is the universal gas constant, u., and T, are the values of viscosity
and absolute temperature of the undisturbed flow and n; is the exponent of
the exponential law (nq =0.76 for air).

26.4 Dependence of the Density Function and Absolute
Temperature on the Spectral Coefficients of the Velocity
Components

We now consider the PDE of continuity; that is,

Opus) | Olpvs) | Olpws)
8(E1 8302 8%3

=0.

If the density function R = In p is introduced instead of the density p, the
the PDE of continuity assumes the form

(26.4)

8_(171 61172 8:273

OR OB OR __(Dus 0 | Ows
8:171 8332 68:173_ ’

If the spectral form of R given in the fourth equation (26.1) is now in-
troduced in the continuity equation (26.4), which is linear in the spectral
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coefficients 7; of R, and if the collocation method is used, we arrive at the
linear algebraic system

N
Zgz',ﬂ“i =7, J=12,.,N. (26.5)
=1

Solving this linear algebraic system, we obtain explicit expressions for the
spectral coefficients r;, which are functions only of the spectral coefficients of
the velocity components.

Next, we consider the PDE for the absolute temperature 7"

oT oT oT 1 dp dp dp
Ve FWsr— = — | Us 7 + Vs + Wsm— + ANAST + pgdal,
Ho oxq 4 0o s Ozz  pCp [ 1o ox, v Oxo o Oxs 3 HPa
(26.6)
where p, p, and p are the local pressure, density, and viscosity, A is the coef-
ficient of the thermal conductivity of the gas, C} is the coeflicient of specific
heat at constant pressure, and ¢4 is the dissipation function

o ous\P (v (ows\? dus | Ous\’
¢d_2l<3'_x1> (o) +(5) |+ (5o

2 2
N (8w5 n %) + (6u5 + 8w5) - %(div‘?)z.

0$2 01‘3 01E3 01,‘1

The PDE (26.6) is used to compute the spectral coefficients ¢; of the ab-
solute temperature 1" as functions of the spectral coefficients u;, v;, w; of the
velocity components. If the spectral form of temperature, given by the fifth
equation (26.1), the pressure p, given by (26.2), the density function R, ex-
pressed as a function only of the velocity components and obtained by solving
the linear algebraic system (26.5), and the exponential law, given by (26.3)
for the viscosity p in terms of temperature, are used, then all these entities
are climinated from the temperature equation (26.6). The coefficients ¢; de-
pend only on the spectral coefficients u;, v;, w; of the velocity components. If
the collocation method is also applied, we obtain a transcendental algebraic
system in the spectral coeflicients t¢; of the absolute temperature 1"

N

Zhipti+h0p(Tnl)p:9p, p = 1, 2,...,N.
i=1

The coeflicients h;p, hop, and 8, depend only on the spectral coefficients
ui, v;, and w; of the velocity components. The PDEs of the NSL are split,
and all entities are expressed as functions only of the spectral coefficients of
the velocity components, which are determined by solving the impulse PDEs
of the NSL written in spectral forms, as in [Na07].
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26.5 The Iterative Optimum-Optimorum Theory

The strategy of the aerodynamical global OD of the shape of the FC used
here is a two-times enlarged variational method developed by the author.

The first enlargement allows the performing of the inviscid global OD of
the shape of the FC (namely, the optimization of its distributions of camber,
twist, and thickness, and also of its similarity parameters of the planform) and
leads to an enlarged variational problem with free boundaries. The author de-
veloped an optimum-optimorum (OO) theory for the solution of this enlarged
variational problem. The global optimized shape of the FC is chosen within
a class of admissible FCs defined by some suitable properties. A lower-limit
hypersurface of the drag functional as a function of the similarity parameters
v; is defined, namely,

Cz(zi) = f(vi).

Each point of this hypersurface is obtained by solving a classical varia-
tional problem with given boundaries (i.e., a given set of similarity parame-
ters). The position of the minimum of this hypersurface, which is numerically
determined, gives the best set of the similarity parameters, and the optimal
shape of the FC, which corresponds to this set, is also the global optimized
shape of the FC in the class. This OO theory was used by the author for the
aerodynamical inviscid global optimization of the shapes of three models with
respect to minimum inviscid drag, namely the delta wing model ADELA and
the integrated WF models FADET T and FADET II, at cruising Mach num-
bers My, = 2; 2.2; 3, respectively. All these three global optimized models
have high aerodynamical performances.

The second enlargement of the variational method consists in the devel-
opment of an iterative OO theory, in order to also introduce the influence of
friction in the total drag functional and in the aerodynamical OD of the shape
of the FC. The previous inviscid global optimized shape of the FC now rep-
resents the first step in the iterative viscous shape optimization process. An
intermediate computational checking of the inviscid global optimized shape of
the FC is made with the author’s zonal, reinforced spectral viscous solutions
for the three-dimensional NSL, which use the author’s analytical hyperbolic
potential solutions at the edge of the NSL edge and reinforce the numerical
solutions of the NSL. These numerical solutions, with analytical properties,
have correct jumps along the singular lines of the FCs and a correct last
behavior. The friction drag coefficient C((if ) of the FC is determined. The in-
viscid global optimized FC shape is also checked from a structural point of
view. A weak aerodynamics/structure interaction via additional or modified
constraints can produce important changes in the final global aerodynamical
optimized shapes of FCs. The flow chart of the iterative OO theory with weak
interaction is presented in Figure 26.1.

An intermediate computational checking of the inviscid global optimized
shape of the FC is made with the author’s zonal, spectral viscous solvers for
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Fig. 26.1. The iterative optimum-optimorum theory, with weak interaction.

the three-dimensional PDEs of the NSL. The friction drag coefficient C’C(lf ) of
the FC is determined. The inviscid global optimized shape of the FC is also
checked from the structural point of view. Additional or modified constraints,
introduced in order to control the camber, twist, and thickness distributions
of the aerodynamical, global optimized shape of the FC for structural reasons,
are proposed here. In the second step of optimization the predicted inviscid
optimized shape of the FC is corrected by including these supplementary con-
straints in the variational problem and the friction drag coefficient in the drag
functional. The iterative optimization process is repeated until the maximal
local modification of the shape in two consecutive optimization steps presents
no significant change.

26.6 Weak Aerodynamics/Structure Interaction

We propose a weak aerodynamics/structure interaction via new and modi-
fied constraints introduced for structural reasons in the global aerodynamical
optimization problem, in order to obtain a final shape that is good from the
aerodynamical point of view and also satisfies the stiffness requirements of the
structure.

Reductions of the magnitudes of the aerodynamical optimized FC camber
andstwistpdistributionsymaysbemecessary, especially when the FC is optimized
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at higher supersonic cruising Mach numbers. These reductions can be obtained
if the Kutta condition on the leading edges of the FC is satisfied at a supersonic
Mach number lower than the cruising Mach number (modified constraints).

The control of the magnitude of the aerodynamical optimized thickness of
the FC along its central longitudinal section is useful because aerodynamical
optimization has the tendency to push the maximal thickness away from the
central section, especially in the rear part of the FC. This control can be
realized by the introduction of a central fuselage zone on the wing, as treated
in the previous section, in order to create enough place for a structure.

The augmentation of the aerodynamical optimized thickness distribution
may be necessary, especially at the rear part of the FC, because the aerody-
namical global optimized shape of the FC looks, in its longitudinal cuts in the
vicinity of the trailing edge of the FC, like Joukowsky profiles. An augmen-
tation of the thickness in the vicinity of the trailing edge with a small loss in
drag is obtained by means of the following procedure. First, a small extension
of the leading edges is made, and the zero thickness line is moved behind its
initial position (on the trailing edge). The thickness distribution of the FC
with an artificial augmented area of the planform is optimized at cruising
Mach number, and the condition of null-thickness is now satisfied along the
new artificial trailing edge, which is parallel to the initial trailing edge. After
this optimization, the artificial augmented part of the FC, located behind the
initial position of the trailing edge, is cut along the initial trailing edge and is
eliminated. The global optimized thickness distribution is augmented in the
rear part of the FC, as required by the structure stiffness. Also, the optimal
distributions of thickness and of the angles of aperture of the FC along its
initial trailing edge are small and asymptotically cancel along the artificial
position of the trailing edge, as desired from the aerodynamical point of view.

There are two possibilities for designing a supersonic transport aircraft
(STA).

e If the first, classical solution of the supersonic FC with one central inte-
grated fuselage is chosen, the augmentation of the thickness of the FC in its
central section can be obtained partially by increasing the relative thickness
of the wing or, more efficiently, by introducing a central fuselage zone with
augmented relative thickness, as used by the author for the design of the fully
optimized and fully integrated models FADET I and FADET II. This classical
solution is far from the tendency of aerodynamical thickness optimization.

e If the second, nonclassical solution of the FC with two twin integrated
fuselages located in the vicinity of the central zone of the wing is adopted, the
shape of this supersonic FC, proposed by the author in the form of a fully op-
timized and fully integrated Catamaran supersonic transport aircraft (CATA-
STA) with fuselages almost completely embedded in the wing and shown in
Figure 26.2, is more adequate for the requirement of aerodynamical thickness
optimization: it has more lateral stability; it has more stiffness because, for
the same number of passengers and the same transversal section, the fuse-
lages_are half as long as those obtained from the solution with one central
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Fig. 26.2. Fully optimized and fully integrated catamaran STA.

fuselage; and, since it can fly with one characteristic surface (instead of two
shock waves produced by a classical nonintegrated central fuselage), it cannot
produce sonic boom interference.

26.7 Conclusions

The iterative optimum-optimorum theory is stable, robust, and rapidly con-
vergent. It has almost all the attributes of genetic algorithms like evolutions,
mutations, crossovers, and migrations, it easily allows multidisciplinary de-
sign, and it also takes care of friction. The theory is used for the optimal
design of the proposed CATA-STA.

The analytical three-dimensional hyperbolic potential solutions previously
given are successfully used as the outer flow at the edge of the NSL and
to reinforce the Navier—Stokes zonal spectral solutions proposed here. The
solution can be easily used by other researchers to reinforce and stabilize
their own numerical solutions.

The weak aerodynamics/structure interaction via new or modified con-
straints introduced for structure reasons in the aerodynamical global optimal
design, leads to a reshape of the FC in order to obtain an aerodynamical,
global optimized shape that is also good for structural purposes.

The fully optimized and fully integrated shapes of the models ADELA,
FADET I, FADET II, and CATA-STA, designed by the author using the OO
theory, look like birds; namely, they are flattened, convex shaped in the frontal
part, and have a wave shape in the rear part.




290 A. Nastase

References

[Na73] Nastase, A.: Use of Computers in the Optimization of Aerodynamic Shapes,
Editura Academii, Bucharest (1973) (Romanian).

[Na86] Nastase, A.: Optimum-optimorum integrated wing-fuselage configuration
for supersonic transport aircraft of second generation, in Proceedings 15th
ICAS Congress, London (1986).

[Na07] Nastase, A.: Computation of Supersonic Flow over Flying Configurations,
Elsevier, Oxford (2007).

[Na02] Nastase, A.: Design of aerodynamical optimal shape of an integrated STA
via spectral Navier—Stokes layer. AIAA-2002-5552, technical paper, 9th
ATAA /ISSMO MAO Symposium, Atlanta, GA (2002).

[Na04] Nastase, A.: Zonal, spectral solutions for Navier—Stokes layer and appli-

cations, in Proceedings Fourth ECCOMAS-2004, Zienkiewicz, O.C. et al.
(eds.), Wiley, Chichester (2004).




27

Multiscale Investigation of Solutions of the
Wave Equation

M. Perel,! M. Sidorenko,? and E. Gorodnitskiy?

! Toffe Physical-Technical Institute, St. Petersburg, Russia;
perel@mph.phys.spbu.ru, eugy@yandex.ru
2 St. Petersburg University, Russia; m-sidorenko@yandex.ru

27.1 Initial Value Problem for the Wave Equation

We consider here an initial value problem for the homogeneous wave equation
with constant coefficients in three spatial dimensions, that is,

. 2¢(, p , _
Uy — C (u:wc + uyy + uzz) =0,

uly=0 = w(r), au = v(r). (27.1)

The number of dimensions is not essential, and the method proposed can be
generalized with minor changes to the case of an arbitrary number of spatial
dimensions. We suppose that the initial data for the problem (27.1) has a
complicated multiscale structure, i.e., the initial data possesses rapid changes
of local frequency, a high degree of localization, singularities, discontinuities,
and sharp edges. An example of such data is presented in Figure 27.1. We
also note that this image is represented in discrete, not analytic, form. The
most convenient mathematical apparatus for describing initial data of this
kind is a continuous wavelet transform [AnMu04]. Not only does the wavelet
transform contain complete information about the local structure of the data,
i.e., it has an inverse, but it is also known to be the most adequate transform
for qualitative analysis of the data.

When the initial data has a multiscale structure, the wave field is also
multiscale at any time. This means that different spatial scales of a wave field
at a fixed time may have localization in different spatial areas. Then it is useful
to know the time evolution of the wavelet transform taken with respect to the
spatial coordinates. We offer an analytic formula for the time dependency of
the wavelet transform, which does not require the calculation of the wave field
itself.

We define a class of solutions denoted by H of functions u(r,t) € La(R?)
that satisfy the wave equation as a distribution [GeSh67]:

%(u(r,t), a(x))=c*(u(r 1), Aa(r)) Va € S(R?), (27.2)
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SR

Fig. 27.1. An image of the Olga pond in Peterhof, St. Petersburg.

where
(u(r,t),a(r)) = /d%u(nt)ﬁ.

The initial conditions are taken in the form
u(r,0) = w(r),

%(u(r, t), a(r)) = (v(r),a(r)) Va e S(R?). (27.3)

t=0

We require that w(r) € Lo(R3) and ©(k)/|k| € La(R3), where (k) is the
Fourier transform of v(r). These conditions ensure that u(r,t) € Ly(R3).
This chapter presents a development of our results in [PeSi08].

27.2 A Continuous Wavelet Transform and Its Main
Properties

To make the paper self-contained, we include necessary facts on the continuous

wavelet transform. Numerous books on wavelet analysis are now available; for

example, see [Da92], [AnMu04]. A wavelet transform F of a given function
3
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F(a,f3,v,b) = /d3r f(r) ¢p=B70(p). (27.4)
R3

depends on the choice of an analyzing function ¢ referred to as a mother
wavelet. The mother wavelet ¢(r) € L2(R3) is an arbitrary function with
symmetry about the OZ axis. Usually the mother wavelet is assumed to satisfy
an additional condition, which is necessary to use the inverse transform. We
will discuss this condition below. The family of wavelets ¢®#7:%(r) is derived
from the chosen mother wavelet ¢(r) by the formula

1 r—b
a,3,7,b — -1
¢V () = a3/2¢ <1\/Im " > ) (27.5)

where Mg, is the rotation matrix through angles 3 and =,

cosf —sing 0 1 0 0
Mgy =MgM, = | sing cos@ 0 0 cosy —siny
0 0 1 0 siny cosvy

b € R? characterizes translation, and a € (0,0c) is a dilation parameter.
The coefficient a=%/? is introduced to retain the Ly(R3) norm of wavelets
independent of parameters.

The wavelet transform depends on a set of parameters a, 3,7v,b. With a
simple example we show what kind of information can be extracted from the
wavelet transform for different values of parameters. The choice of a mother
wavelet determines the possibilities of analyzing the data with the help of the
wavelet transform. The Morlet wavelet [Da92], [AnMu04] reads

—_ 2 i .
p(r) =eI"em,

1] = k. (27.6)
The vector I is the direction of the Morlet wavelet. The wavelet trans-
form (27.4) with the Morlet wavelet can be interpreted as a windowed Fourier
transform

F(a,ﬂ,’y,b) — a73/2 /d3,’,, f(?") ef\r7b|2/a2efi('r'fb)-M,g,yl/a-

R3

The vector Mg,l/a has the sense of a wave vector k. The exponent exp(—|r —
b|?/a?) is a window that cuts part of the function f in the vicinity of the point
b. The modulus of k is ka~', and the angles 3, determine its spatial direc-
tion. Small values of a, i.e., large values of spatial frequencies, are responsible
for discontinuities near the point b in space. It is known that any wavelet also
has this property if ¢(0) = 0 and ¢(r) € Li(R3). The Morlet wavelet (27.6)
satisfies this condition approximately for large k. The Morlet wavelet extracts
discontinuities near the point b in the direction defined by the angles 5 and
~..If the direction is not important, the integral
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Fig. 27.2. The modulus of the direction-independent wavelet transform of the image
in Figure 27.1 for small a plotted against bz, by.

2T T
/ a3 / dy siny |F(a, 6,7, b)?
0 0

as a function of b for a small fixed a characterizes the distribution of dis-
continuities. The same analysis of the data can be obtained by means of a
spherically symmetric wavelet, for example, by the Mexican hat [AnMu04].

A similar analysis can be carried out in the two-dimensional case. We
demonstrate the possibilities of the wavelet transform with two-dimensional
examples. The formula for the wavelet transform is similar to (27.4), but the
family of solutions reads

aBby _ L ar—b [ cosf —sinp
‘75’6(")_5‘75(1\% a )’ Mﬂ_(sinﬁ cos (3 >

The modulus of the wavelet transform of the image in Figure 27.1 for small
fixed a = 0.003 is plotted against b, and b, in Figure 27.2. It is calculated
with a mother wavelet [KiPe00], [PeSi07] for the parameters p = 0.4 and
e = v = 4. The wavelet is almost spherically symmetric. The level of brightness
is indicative of the value of |F(a, b)|.

To show the directional potentialities of the wavelet transform, we consider
a simpler example plotted in Figure 27.3.

In this case, the functlon f is a characteristic function of a rectangle. We

a wavele S hatyis numerically close to the Morlet wavelet
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Fig. 27.3. A simple example of a function with discontinuities.
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Fig. 27.4. Levels of the modulus of the wavelet transform of the function in Fig-
ure 27.3 for small a plotted against by, by for (a) 5 = 0°, (b) B = 45%, and (c) 8 = 90°.
The contour of the original rectangle is plotted with dotted lines.

if we choose the parameters p = 4, € = 16, and v = 0.5. The modulus of the
wavelet transform of f is plotted against b, and b, in the subfigures of Fig-
ure 27.4. All these subfigures are built for one and the same small fixed value
a = 0.1 but for different fixed angles 8. The angle is measured counterclock-
wise from the z-axis. In the pictures, we see the lines perpendicular to the
direction of the axis, I, of the wavelet. If the direction I does not coincide with
the direction of the sides of the rectangle, we observe only the corners.

The global directional properties of the image are characterized by the
integral function [AnMu04]
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Fig. 27.5. Scale-angle diagram & of the function in Figure 27.3 plotted against 3
and a, a € (0,5), 8 € (0,360).

#(5.0) = [ &|F(a5.b)"

R2

plotted against a and 8 in Figure 27.5.

We see that @ has local maxima in the direction perpendicular to the sharp
sides of the rectangle, which are § = 0° and g = 180°, = 90° and 3 = 270°
for small values of a. For each of these two angles we have a maximum for
a = 0 and one more maximum that characterizes the width and the length of
the rectangle.

The wavelet transform can be inverted:

27 g oo
1 . da a
1) = o [an [aysiny [S5 [ @b r a0 000w, @r)
X
0 0 0 R3

where x(r) € La(R?) is another axisymmetric mother wavelet with the OZ
axis, Y*#7b(r) is the family of wavelets constructed according to (27.5), and

[ sy S(R)X(K) 5, [0(k)X (k)]
R3 R3

The formula (27.7) allows us to represent the function f(r) as a superposition
of the functions x*#7:®(r), which form an overcomplete set. The wavelets ¢
and x may coincide.

A simplified reconstruction formula also exists [AnMu04]. It allows one to
reconstruct the function f from its wavelet transform directly, without the
wavelet y:
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/d_// /d'y siny F(a, B, 7, 7),
0
where —_—
- (k) ¢
CE/ K[ /d3 |k|3)| = .
R3 R3

27.3 Time-Dependent Wavelet Transform

We study here wavelet transform (27.4) of a solution with respect to 7, the
time t being a parameter:

Ua, B,7,b;t) = / d*ru(r,t) gabrb(r). (27.9)
R3
To state the result we choose a solution ¢(r,t) of the wave equation (27.2)
that belongs to Lo(R®) with respect to 7 and has only positive frequencies,
ie.,
1 ) ~ .
P ) = g [ AR B DRT, Flk.0) = o)
i
R3

We construct a family of solutions by the formula

1 —bt
I (1 t) = 3/2¢<M‘1r : >

a a
When t = 0, this formula determines a family of wavelets (27.5), where ¢(r) =
@(r,0). We introduce the second solution 9 (r,t) as
t
(r,t) = / dre(r, 7).

We require that the solution v (r,t) belong to Lo(R?). If the solution ¢(r,t)
additionally belongs to L;(R®), then p(k) is continuous and bounded in the
vicinity of k = 0 and then p(k)/|k| € La(R?) and (r,t) € Lo(R3) for fixed
t.

Proposition 1. The time-dependent wavelet transform (27.9) of the solution
of the initial value problem (27.3) is expressed as

U(aa ﬂa 7> b> t)

1
=5 [ @rutr) [FFFTED + g )

(27.10)
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Proof. We rewrite the expression (27.9) using the Plancherel formula

U(a, 3,7, b;t) = # / Bhii(k, t) gm0 b (k). (27.11)

R3

The Fourier transform of each solution of the wave equation (27.2) can be
split into a sum of positive- and negative-frequency components

U(k,t) = Uy (k)e Rl L G (Kk)ellklet, (27.12)
The initial conditions yield

(k) = % {@(k) - ﬁﬁ(k)] (k)= % {@(k) + Wlkf(k)] . (27.13)

We substitute (27.13) into (27.12) and then into (27.11). Upon combining the
terms, we obtain

1 N PR ; = ;
) = a,,7,b i|k|ct a,,7,b —ilk|ct
Ulan ot = s [ % {@0) [3757P(R)eTH 1 Gy
R3
1l =" 1 = -
(k) | — a,0,7,b(f)ellklct — $®B7:b()e—ilk|ct . 27.14
+v<)[ic|k|¢ (T 4 G (ke ]} (27.14)
We note that
~ . 1 ~ . ~
P(k)eFFI = B(k, +1), mqﬁ(k)e*ﬁ"’“'“:—w(k,it). (27.15)
1C

The representation of {b\a’ﬂ 18 in terms of $%77® contains an additional factor
a:
]_ ~ . ~
@V (R)eFilklet — _paBrb(g 1), 27.16
ke o0, 1) (27.16)
We obtain (27.10) from (27.14) by means of the Plancherel formula and (27.15)
and (27.16).

27.4 Numerical Examples of Wavelet Transform at
Different Moments in Time

We consider the functions in Figure 27.1 and 27.3 as the initial data w(r)
and obtain a time-dependent wavelet transform by (27.10), taking into ac-
count only the positive-frequency part. The wavelet transform of the function
in Figure 27.3 at a fixed time t1(ct; = 5) for small a = 0.1 and a fixed set
of angles 8 = 0°, 45°, 90° is plotted against b, and b, in Figure 27.6. The
directional-independent wavelet transform (Figure 27.2) of the image in Fig-
ure 27.1 calculated at a time t,(ct, = 100) for small values of a = 0.003 is
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Fig. 27.6. Levels of the modulus of the wavelet transform of the function in Figure
27.3 at time ¢ for small a plotted against by, by for (a) 8 = 0%, (b) 8 = 45°, and

(¢) B =90°. The contour of the original rectangle is plotted with dotted lines.
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Fig. 27.7. The modulus of the direction-independent wavelet transform of the image
in Figure 27.1 at time ¢, for a small scale a plotted against b, by.

27.5 Reconstruction Formula

Proposition 2. The solution of the initial value problem (27.8) can be recon-

structed from the time-dependent wavelet transform (27.9) by the formula
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27 T
1 d
u(r,t) = —/a5—(/12/dﬂ/d’y sinyUla, 8,7, r;1),
0

where C is defined by (27.8). (This is understood as an equality of distribu-
tions. The formula can be useful for partial reconstruction of the field if we
are interested only in propagation in a given interval of directions for given
scales.)

Proof. We consider the expression

/ 573 /dﬂ/dfy siny (U(a, 3,7,7;t), a(r)) VYa € S(R3). (27.17)

The Plancherel formula gives

(U(a, B,7,7: 1), a(r)) = / &k alk,t) a2 (aM[;;k) ak). (27.18)

R3

(2m)?

Substituting (27.18) into (27.17) and changing the order of integration yield

[e’e] 27 T
L1, da s
EW/d kii(k,t)a /;/dﬁ/df}/smy(t)(aMmk).
R3 0 0

Taking a new variable of integration ¢ = aMEik in the inner integral and
using the fact that, in the case of an axially symmetric wavelet, the domain
of integration is R3, we obtain C. Plancherel’s formula implies that the ex-
pression is equal to (u, a).
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28.1 Introduction

Some heavy nuclei are fissile after having absorbed a neutron, i.e., they vio-
lently split into two unequal fragments, while at the same time ejecting two or
three neutrons on average. This phenomenon is called fission. Neutrons ejected
during one fission can, in turn, be absorbed by other neighboring fissile nuclei,
thus creating a chain reaction. If this reaction is controlled and stabilized, one
gets an energy source—this is what happens in a nuclear reactor [WF07]. Nu-
clear power is a proven technology and has the potential to generate virtually
limitless energy with no significant greenhouse gas emissions. From a physi-
cal understanding of criticality, it appears that any system containing fissile
material could be made critical by arbitrarily varying the number of neutrons
emitted in fission. It is well known that criticality calculations can often be
best approached by solving eigenvalue problems. In elementary nuclear re-
actor theory, the dominant eigenvalue, i.e., the effective multiplication factor
(keff), is thought of as the ratio between the numbers of neutrons generated in
successive fission reactions. The eigenfunction corresponding to the dominant
eigenvalue is proportional to the neutron flux within the reactor core. Further-
more, in most realistic reactor global calculations, it is necessary to consider
an approximation of the energy-dependent eigenvalue problem in which the
energy variable is discretized. The most common energy discretization method
is the conventional multigroup approximation, in which the neutron energy
range is divided into contiguous energy groups. In practice, multigroup dif-
fusion theory has been applied extensively to nuclear reactor analyses and
generally found to perform better than it theoretically has any right to, be-
cause it does not include the direction-of-motion variable [A10d86]. Neutron
fission events do not take place in the non-multiplying regions of nuclear re-
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actors, e.g., moderator, reflector, and structural core; therefore, we claim that
we can improve the efficiency of nuclear reactor global calculations by elimi-
nating the explicit numerical calculations within the non-multiplying regions
around the active domain. In this chapter, we describe the application of the
Laplace transform method in order to determine the energy-dependent albedo
matrix that we use in the boundary conditions of multigroup neutron diffusion
eigenvalue problems in slab geometry to substitute the explicit numerical cal-
culations within the baffle-reflector system around a thermal nuclear reactor
core. Albedo, the Latin word for “whiteness,” was defined by Lambert (1760)
as the fraction of incident light reflected diffusely by a surface [Pa61]. This
word has remained the usual scientific term in astronomy. Here, we extend
it to the reflection of neutrons. At this point, an outline of the remainder of
this chapter follows. In Section 28.2 we present the mathematical formulation.
In Section 28.3 we present numerical results, while concluding remarks with
suggestions for future work are given in Section 28.4.

28.2 Mathematical Formulation

Let us consider Figure 28.1, which illustrates a slab where regions F stand for
the fuel regions, region B is the baffle of width I, = z;, — x,, and region R is
the reflector of width I, = . — xp. Our goal is to determine an albedo matrix
that we can use in the boundary conditions at = = x, of multigroup neutron
diffusion eigenvalue problems in slab geometry to substitute the explicit nu-
merical calculations within the baffle-reflector system (z, < z < x.), which
does not generate power.

F F F F B R
| |
I L) L T T T I
1} X X  #
I i
F = fuel regions
B = baffle
R = reflector

Fig. 28.1. Slab domain.

We now write the two-energy group slab-geometry neutron diffusion equa-
tions for the two non-multiplying regions of Figure 28.1:

Ol LE Zyl_i.lbl
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CUld’—;(x) + ng(@)d14(2) =0, (28.1)
J1q(w) = _Dl,q—d(élcé;,(x)’ (28.2)
Mil’—im + Zazq(7) = To1o2,491,4(2), (28.3)
J2.q(7) = —Dz,q—d¢2;(x). (28.4)

Equations (28.1) and (28.2) hold for the fast energy group (g = 1) and (28.3)
and (28.4) are valid for the thermal energy group (g = 2). Here, z, <z < x
for ¢ = b (baffle) and =, < z < z, for ¢ = r (reflector). Moreover, we define

J(x): neutron current;

¢(x): neutron scalar flux;

D: diffusion coefficient;

Y r: removal macroscopic cross section;

X, absorption macroscopic cross section;

Y12 downscattering macroscopic cross section.

Furthermore, we consider the boundary conditions
Py () =0, (28.5)

By, (20) = 0. (28.6)

At this point, we apply the Laplace transformation in space to (28.1)
and (28.2) with ¢ = b, making use of the fact that we can move the origin
x = 0to x = x,. Therefore, by solving the resulting linear system and applying
the inverse Laplace transform, we obtain

~ 916(Ta) VD162 R16 — J1,5(Ta) exphi?
2/D1pXR1p
$1p(Ta)V/DrpXr1p — Jip(za)
+ exp "LbEL (28.7)
2/ D1 X R1p

J X - \/D 2: (25 q
7-’ ($) l,b( a) 1,b~R1,b 1,b( a) kl,lz
] ¢ + /D] [ E R1.b d)] vl ]
+ : (x ) : : : ( ) exXp Lo (288)

¢1.6()

Next, we substitute (28.7) in (28.3) with ¢ = b, apply the Laplace trans-
formation in space, solve the resulting linear system, and apply the inverse
Laplace transformation to obtain
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J2,b($a)
2/ D3y X2

+ ¢2,b2($ll) (ekz’blb + e—k2,blb)

pIA
+ 5 L2 (¢1,b(%)\/ Dy Xrip — Jl,b(%)) eFrels

D1y XRr1pXa2,0

X _
+ s1o2b (¢1,b(%)\/ Dy XR1p + Jl,b(a?a)) e Rty
2/ D1 pXR1pYa2p
Ye152,b

2\/D1 b2 r1,6(V/ Za2,bD2,p) k1 p

Pap(w) =

_ek2ole + e—kz,blb)

(2J1,p(—eM> bt 4 e7h2ele)) 1 (28.9)

Jop(7q
JQ b( ) 2, b2(m ) (€k2’blb _ e—k2,blb)

+ gblb(xa) V DQabE‘lQab (ek2,blb + e—k2,blb)

2

N Ys152,001,6(Ta) (cFaolo 4 ¢—Haobs)
2(kap + k1)

+ Esl—>2,b¢1,b($a) (ekz,blb + e—kz,blb)

2(kap — k1p)
+ 231—)2,bJ1,b(:17a) ekz,blb . e—kz,blb)
D1y Xg1p(kap + k1)
X J
+ 512 /1.6(%a) (eF2lo — gmhanle) (28.10)

D1y Xp1p(kap — k1)

where we have defined

Dl 4 D2,q
g = b (baffle) or r (reflector).

To proceed further, we follow similar steps for the reflector region, i.e.,
g=r (zp <z <z, and use the boundary conditions (28.5-28.6). Moreover,
we write the two-energy group albedo equation as

Ji(wa) \ _ an 0 ¢1(a)

Jo(za) —Qg1 Qg2 $a(wa) )’
where the 2 x 2 albedo matrix is to substitute the baffle-reflector system
(x, <z < x.) in Figure 28.1. At this point, we remark that the albedo entry
w2 is set equal to zero, because we have neglected the upscattering events

in this approach, as we see in equation (28.1), where Xs5_,; , = 0. By using
the Laplace transform technlque as described previously, the entries of the
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/D12 r1,6\/D1,p X Rr1p sinh(ky plp)

« =
. \/Dl,bERl,b COSh(klyblb) + Dl,RERl,R COth(k‘lleR) Sinh(k‘lvblb)
n \/Dl,bZRl,b\/Dl,RERl,R COth(kl’RlR) COSh(kl’blb)
\/ Dl,bZRl,b COSh(k}Lblb) + Dl,RZRl,R COth(kl’RlR) Sinh(kl’blb)
o — (Xs152.)° /D2y a2
12 —

(k2p)? — (k1,p)*\/ D2y Xa2,p cosh(kaply) + /D2 rYa2, r sinh (k2 ply)
(v/D1pXr1psinh(kyple) + /D1, X R1, R coth(ky, rlg) cosh(ky plp))
(\/m cosh(k1plp) + v/ D1,rYR1, R cOth(k1 rlR) sinh(klyblb))
(
2

Ds152)2
(k2,p)? — (K1,p)?
Dy X2
o8 (77 S T
DQ,bEaQ,b COSh(k}g’blb) + DQ,TZGQ’T Slnh(k)l,blb)
n (Xs1525)%/ D12 R10
(k2,r)? — (k1,r)?\/D1,pXR16 cosh(k plp) + v/ D1,r X R1,r sinh(kq plp)

VD2 X020 D2 (k2 r — ki1.R)

/D2.pXa2p cosh(ka ply) + /D2, g Xuz,r sinh(ka )’

X

_|_

gy — /D2y Xa2,\/D2p Xaz,p sinh (ko ply)
/D2y Xazp cosh(kaply) + /Do, g Xa2, r coth(ks, glr) sinh(kg plp)
/D2pXa2.4\/D2,rXa2,r coth(ka rlr) cosh(kaply)

/D2 Xas. cosh(ka ply) + /D2 X2,k coth(ko glg) sinh(kaply)

+

28.3 Illustrative Example

In this section we examine the numerical results for one model problem. This
two-energy group model problem consists of the heterogeneous slab illustrated
in Figure 28.2. The material parameters for each zone are given in Table 28.1.

Moreover, vacuum boundary conditions apply on the outer boundary of
the reflector region, i.e., at z = 174.857 cm and reflective boundary conditions
apply at x = 0. We assume that this half domain generates 200 MW per cm?
cross-sectional area and the energy release is equal to 200 MeV for each fission
reaction. To solve this problem, the convergence criterion for the effective
multiplication factor (keff) is

L) _ -1)
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fuel fuel fuel fuel
zone 1 zone 2 zone 3 zone 4 E R I
511 L L Pt L L] :‘I
25 am 25 em 22em 20em 2857em 80 an

Fig. 28.2. Model problem.

Table 28.1. Material parameters for the Model Problem

Material zones  D; Do Yri Yo Y2  vEn v
fuel zone 1 1.438000 0.397600 0.029350 0.104900 0.015630 0.008350 0.155618
fuel zone 2 1.438000 0.382500 0.026600 0.078620 0.017380 0.008350 0.155618
fuel zone 3 1.409000 0.405100 0.026610 0.106300 0.015830 0.010500 0.222180
fuel zone 4 1.466000 0.385800 0.026150 0.111000 0.015590 0.008064 0.199381
baflle 1.049000 0.333493 0.004634 0.151881 0.001012 0 0
reflector 1.871400 0.283409 0.035411 0.031579 0.043400 0 0

and the convergence criterion for the group scalar flux is

@ (1-1)
ax gZ)g,j*l/? B gby»jfl/Q
J=1:J+1 gb(l),
g=1:2 9,j—1/2

< eg, (28.12)

where J is the total number of discretization cells in the spatial grid set up

on the domain. In (28.11), we have defined k() as the Ith estimate of the
O]

97.7_1/2
been defined as the [th estimate of the group cell-edge scalar flux. For this

model problem, we assumed €, = 1075 in (28.11) and e = 107% in (28.12).
The fast-group scalar flux and the thermal-group scalar flux displayed by
Tables 28.2 and 28.3, respectively, show that the albedo boundary conditions,
as described in this chapter, for one non-multiplying region and for two non-
multiplying regions are very accurate at substituting the reflector region and
the baffle-reflector system around the active domain, when compared with
the results generated by the finite difference code explicitly.

In addition, Table 28.4 shows the power distribution per unit cross-
sectional area and the effective multiplication factor as generated by the finite
difference code explicitly and using the albedo boundary conditions. As we
see, the results are very accurate with respect to the results generated ex-
plicitly. In addition, the efficiency of the computational finite difference code
increased significantly by the use of the present albedo boundary conditions.
That is, the CPU running time for convergence of the model problem de-
creased 39% by the use of the one-region albedo boundary condition and 59%
by the use of the two-region albedo boundary condition. Moreover, the use of

dominant eigenvalue k in the power iterative scheme. In (28.12), ¢ has
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Table 28.2. Neutron scalar flux for the fast energy group (g = 1).

(g=1) X =0 cm X=25cm X=50cm X=72cm X=92 cm
Neutron scalar
flux for the
fast energy group 1.043374x10'* 8.444018x10'% 1.635675x10'® 9.573301x107 1.750701x10'¢

Finite difference

Neutron scalar
flux for the
fast energy group 1.043131x10'* 8.44212x10'® 1.635346x10'® 9.572398x10'7 1.764890x10'¢

One-region albedo

Relative deviation
with respect to the 0.023290 0.022430 0.020114 0.009432 0.810475
explicit calculation

(%)

Neutron scalar
flux for the
fast energy group 1.042678x10'* 8.438297x10'6 1.634609x10'® 9.570281x107 1.773688x10'¢

Two-region albedo

Relative deviation
with respect to the  0.066707 0.067752 0.065172 0.031546 1.313017
explicit calculation

(%)

the Chebyshev acceleration scheme for the convergence of the power iterative
method [F172], decreased the number of iterations by 19%; that is, 113 power
iterations for unaccelerated convergence of the model problem, and 92 power
iterations with the Chebyshev acceleration scheme.

28.4 Concluding Remarks

We described in this chapter the use of the Laplace transform method in space
for the calculation of the albedo boundary conditions in energy-dependent
neutron diffusion eigenvalue problems in slab geometry. Besides generating
very accurate results, the albedo boundary conditions, as described in this
chapter, improved the efficiency of the fine-grid running code, as the execu-
tion time has shortened considerably. The extension of the present albedo
boundary conditions for multigroup neutron diffusion eigenvalue problems for
nuclear reactor global calculations with more than two energy groups, say
with four energy groups, is straightforward except for the fact that the ma-
i i in the 4 x 4 albedo matrix will be much more
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Table 28.3. Neutron scalar flux for the thermal energy group (g = 2).

(9=2) X=0cm X=25cm X=50cm X=72cm X=092 cm

Neutron scalar flux

for the thermal
energy group  4.771184x10'2 4.781230x10'° 8.733574x106 4.159283x10'¢ 4.252688x10'*
Finite difference

Neutron scalar flux
for the thermal
energy group  4.770100x10'2 4.780186x10'° 8.731865x10% 4.158912x10'¢ 4.262688x10*

One-region albedo

Relative deviation
with respect to the  0.022720 0.021835 0.019568 0.008920 0.235145
explicit calculation

(%)

Neutron scalar flux
for the thermal
energy group  4.767740x10'2 4.777731x10° 8.727408x10® 4.157735x10'¢ 4.282688x10'*

Two-region albedo

Relative deviation
with respect to the  0.072183 0.073182 0.070601 0.037218 0.705436
explicit calculation

(%)

tedious. Although the present albedo boundary conditions do not directly ap-
ply to multidimensional diffusion eigenvalue problems, we can use the idea
in an approximate way by neglecting the transverse leakage terms in order
to derive the albedo expressions. We expect that the efficiency shall be even
more pronounced in fine-grid multigroup multidimensional methods, such as
the conventional finite difference. In addition, it is well known that the con-
vergence rate of the power method [F172] depends highly on the dominance
ratio in the eigenvalue spectrum and may be very slow. As we can see in
the previous section, the acceleration of the power method using a technique
based on the two-parameter Chebyshev extrapolation of the fission source im-
proved the convergence rate of the power method. In slab geometry, this may
not represent a significant contribution; however, in multidimensional multi-
group diffusion eigenvalue problems for nuclear reactor global calculations,
the use of multigroup albedo boundary conditions together with the Cheby-
shev acceleration scheme might improve the efficiency of the computer code
considerably.
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Table 28.4. Power distribution (MW/cm?) and effective multiplication factor
(keff).

R1° R2® R3¢ R4%  R5° R6' keff

Power
(Finite difference) 0.759797 41.299690 145.096800 12.84142 0 0 9.991050x10~!

Power (one-region albedo)  0.759625 41.291030 145.071100 12.87562 0 0 9.991060x10~"

Relative deviation with
respect to the explicit 0.022519 0.020969 0.017712 0.266326 - - 0.000100

calculation %
Power (two-region albedo)  0.759283 41.272220 145.012400 12.95612 0 0 9.991080x1071
Relative deviation with

respect to the explicit 0.067663 0.066514 0.058168 0.893203 - - 0.000300

calculation %

a = Fuel zone 1 in Fig. 28.2
b = Fuel zone 2 in Fig. 28.2
¢ = Fuel zone 3 in Fig. 28.2
d = Fuel zone 4 in Fig. 28.2
e = Balffle

f = Reflector
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29.1 Introduction

While many medical physicists understand the basic principles underlying
Monte Carlo codes such as EGS [Ka00], Geant [Wr01], and MCNP [Br93],
there is less appreciation of the capabilities of deterministic methods which in
principle can provide comparable accuracies to Monte Carlo. Only within the
last years have serious studies been made on the appliance of deterministic
calculations to medical physics applications. The most versatile and widely
used deterministic methods are the Py approximation [Da57]; [SeViPa00],
the Sy method (discrete ordinates method) [ViBa95]; [ViSeBa95], and their
variants [SeVi94]; [RoViVo06]. The method of discrete ordinates has been used
successfully in neutral particle applications [D096]; [Da92] and gamma ray
transport calculations for many years. The calculations for these two types of
radiation are done very similarly, since they are both neutral particles. On the
other hand, to our knowledge, the P v approximation has not yet been applied
in the solution of the charged particle pencil beam transport equation. Pencil
beam equations are used to model, e.g., problems of collimated electron and
photon particles penetrating piecewise homogeneous regions. The collisions
between the beam particles and particles from beams with different directions
cause deposit of some part of the energy carried by the beams at the collision
sites. To obtain a desired “amounts of energy deposited at certain parts of the
target region” (dose) is of crucial interest in radiative cancer therapy.

In this chapter, we present a closed-form solution for the two-dimensional
Fokker—Planck pencil beam equation for electron transport [BoLa96]; [BoLa95]
in a homogeneous rectangular domain. This solution can be considered an
alternative approach for the Boltzmann transport equation for charged par-
ticles. The Fokker—Planck (FP) approximation represents the impact of soft
reactions as continuously slowing down the electrons, while also continuously
changing their direction; e.g., a monodirectional beam will be dispersed into
a finite beam width. This approximation can be derived from a Taylor series
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expansion of the integrand in the scatter source term appearing in the Boltz-
mann equation, with the assumption that only small changes in energy and
direction are significant. The main idea described in this chapter relies on ap-
plying the P approximation, in the angular variable, to the two-dimensional
Fokker—Planck equation and then applying the Laplace transform in the spa-
tial x-variable. As a result, a first order linear differential equation in the
spatial y-variable is attained, for which the solution is straightforward. The
P approximation consists in expanding the angular variable of the angular
flux in terms of the Legendre polynomials. In Section 29.2 we describe in de-
tail the two-dimensional FP pencil beam equation solution. We conclude the
chapter with Section 29.3, where we give some illustrative examples.

29.2 Mathematical Formulation

In order to determine the angular flux of electrons in a rectangular domain, let
us consider the following two-dimensional, time-independent electron trans-
port equation

00,9, 9. B) | 0b@y DE) | g5 R

U —/

= | d2oyE = EQ2 - D(z,y, 2 E, (29.1)

in a rectangle 0 < z < ¢ and 0 < y < b, subject to vacuum boundary
conditions. Here the angular flux, denoted as ¥ (z, vy, E,ﬁ), represents the flux
of particles at position (x,y), with energy E travelling in direction £2 = (u, 7).
The quantity o, in (29.1) is the differential scattering cross section and is

written as
L<N

Us(Ev HO) - Z

=0

20+1

oa(E)P(po), N odd,

where pg = ' 12 is the cosine of the scattering angle and oy are the Legendre
moments of the scattering cross section. In this chapter we focus on screened
Rutherford scattering, which can be written as

a(E)n*(n* +1)
E = —
7(E, po) (1 + 20" — ud)’

where n* > 0 is a typically small constant called the screening parameter.
Screened Rutherford scattering is one of the simplest models of elastic scat-
tering of electrons from nuclei taking into account the screening of the nuclei
by atomic electrons. It is obtained from the Schrodinger equation in the first
Born approximation, using an exponential factor in the potential to model the
screening effect [Re85]. An approximate formula for the screening parameter
is written as
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h2Z3
e 29.2
T Han)?(mev)? (29.2)
where Z denotes the atomic number of the nucleus, muv is the (relativist)
momentum of the electron that is being scattered, and C' is a constant. In

terms of the Planck constant h and the Bohr radius ag,

h2
- 4aH2 '

The FP equation can take many different forms depending on the order
of approximation employed and the characteristics of the scattering cross sec-
tion. In all cases, the integral Boltzmann scattering operator is approximated
with a differential operator obtained using Taylor expansion techniques. This
equation represents an approximation to the Boltzmann transport equation
that is valid whenever small-angle scattering is predominant [Ta67].

We now assume that the scattering process is sufficiently peaked in the
forward direction so that the FP scattering description [Po83] is appropriate.
Thus, the FP approximation [BoLa96] to transport problem (29.1) is given by

oWFP(z,y, 2, F OFP (1,y, 2, F
p Y (ay )Jr77 W (zy )
x oy
o 9
2 Ju

(= o o 2B), (293)

where ' (x,y, 2, E) represents the FP angular flux of particles at position
(z,y), with energy F travelling in direction §2 = (u,n), and the coefficient o,
is called the transport cross section and is defined as

1,1
Ot = 271'/ / os(E, po)(1 — po)dpodn. (29.4)
-1Jo

The differential term on the right-hand side of (29.3) can be replaced by

0 0 —
a_/,t [(1 - u2)a_u]¢FP(x’y’ 07 E)

2 82 8 FP )
— @i - | @ 2B (299)

Substituting (29.5) into (29.3), we obtain

oWl (z,y, 2, E oWl (z,y, 2, E
p Y (. y )+77 Y (. y )
ox dy

= 21— ) - 2 B ). (296
aﬂz 8/1’ b) b) b . .

ol Lal Zyl_i.lbl
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Applying in (29.6) the operator

/ / w)dudn, com m=0,...,N,

and using the recursion formula [Kr66)

n—+1 n

pPn (1) = T 1Pn+1(M) + %—Hpn—l(ll')v

as well as the Legendre polynomial properties, we arrive at the following P y
equations:

n+1 0
2n-|—18 ,(/}n+1(x y’E)'i' 272,-1-18 szn 1(:17 y’E)
2’)’L+1 8 FP Ut’f‘ rpr

with the angular flux moments in discrete ordinates approximated by a
quadrature formula as follows:

S B E) =3 L B ),
=0

for n = 0,..., N, with ¢N+1(m y,E) = 0 in the Py approximation and T,
represented by an integral term, which can be analytically solved, written as

n—/ V(1= 12) Py (1) Paa () dpa. (29.8)

Applying the Laplace transformation in (29.7) in the spatial variable x,
we obtain the linear algebraic system

n+1
2n

¢ | s, B) — G (0., )

—s 2 10—
|: 71;"‘P1(8 yaE)_ Efl(o’y’E)]'i' nE ’l/JFP( )Tn

=%[—n<n+1>}w5P<s,y, E) (299)

+
+2n+1

forn =0,...,N, and ¢F'f 1(8 y, E), vEP(s,y, E), and P, (s,y, E) are the
transformed angular fluxes in the spatial x variable. The linear algebraic sys-
tem (29.9) can be recast in the matrix form

AnBEP (5,9, E) + Bu(s)0FP (5,4, E) — CuttEP(0,5,E) = 0. (29.10)

Here, ¢£'P'(s,y, F) is the N components vector of the derivative of the
angular flux Laplace-transformed in the x variable with respect to y and is
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—75! — —_— —_ T
P —
Vi (s,y, E) —[ EP(s,y, E) ¢FF (s,y,E) .. ¢LF (s,y,E)} :

Here, the column vector W(s, y, E) is the N components of the angular
flux Laplace-transformed vector in the z-variable and ¥ (0,y, E) is the N
components of the angular flux vector in the z-variable at x = 0. They have
the form

- - - - T
GEP(s,y B) = [T (5.9, B) U7 (5.9, B) ... V& (s,9.B)|
GEP 0.9, B) = [057 (0,9, E) ¢FF(0,9.E) ... o57(0.9,B)]"

On the other hand, the components of matrices A,, B,(s), and C,, are
given, respectively, by

17, 0 0 0o --- 0
0 97 0 0o --- 0
A, = 0 0 250, 0 --- 0 ’
0 0 0 0 - (2N +1)*Ty
0 2s 0 0 0
2s 60y 4s 0 e 0
By(s) = 0 4s 3004y 6Gs - 0 ’
0 0 0 2Ns N(N +1)(2N + 1)y
[0 2 0 0 0 7
2 0 4 0 0
0 4 0 6 0
Cn = 5
00 -~ 2N—2 0 2N
| 00 0 2N 0 |

where o4, and T, are defined by (29.4) and (29.8), respectively.
The solution of (29.10) is

?(57 Y, E) = 61(8) e [Bn(S).AEI] +Cy - [Bn(s)]_l ! ¢1§‘P(07y7E)7

where ¢;(s) is an arbitrary constant. In this problem we determine the ¢ (s)
value by applying the boundary and interface conditions. Due to the linear
character of the inverse Laplace transform operator, taking the Laplace inver-
sion of the above ansatz, we get
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n

w (. B) = c-l{d(s) e [Bata7] }
+C"'£_1{[Bn(8>]_1}~ EP(0,y,E). (29.11)

Once we have obtained the inverse matrices A,1, B, *(s), and C, !, we
calculate the inverse of the first term in (29.11) by using the Laplace con-
volution property. Here, it is important to mention that the inverse matrix
B, 1(s) was not obtained analytically, due to the existence of the s param-
eter, a non-numeric parameter. Therefore, we opt to calculate the inverse
Laplace transform numerically—here we apply the Gauss quadrature inver-
sion method [StSe86]; [DaMa79].

29.3 Illustrative Examples

In order to illustrate the aptness of the discussed methodology to solve
the two-dimensional FP pencil beam transport equation, in what follows we
present numerical simulation examples for the absorbed energy in rectangular
domains with different dimensions and compositions. The illustrative exam-
ples are presented under absorbed energy form, i.e., the deposited energy in
several points of interest.

We considered a homogeneous rectangular domain composed of water, tis-
sue, or bone. We also assume a monoenergetic (E = 1.25 MeV) and monodi-
rectional photon beam incoming on the edge of a rectangle. The incoming
photons will be tracked until their entire energy is deposited and/or they leave
the domain of interest. In this study, the energy deposited by the secondary
electrons, generated by the Compton effect, will be considered. The remaining
effects will not be taken into account. The numerical results encountered for
absorbed energy are compared with the ones obtained by the program Geant4
v8, using the Monte Carlo technique for low energy data [Ho07]; [Ro07]. The
package includes detailed simulations of the interactions of particles with en-
ergies from about 250 eV to 250 GeV.

Geant4d [Ag03] is a toolkit for simulating the passage of particles through
matter. It includes a complete range of functionality including tracking, ge-
ometry, physics models, and hits. The physics processes offered cover a com-
prehensive range, including electromagnetic, hadronic, and optical processes,
a large set of long-lived particles, materials and elements, over a wide en-
ergy range starting, in some cases, from 250 eV and extending in others to
the TeV energy range. It has been designed and constructed to expose the
physics models utilized, to handle complex geometries, and to enable its easy
adaptation for optimal use in different sets of applications. It has been used
in applications in particle physics, nuclear physics, accelerator design, space
engineering, and medical physics.

Ingwhatyfellowswespresentynumerical results for three problems.
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Problem 1. Let us consider a homogeneous rectangular domain, constituted
by liquid water (Z/A = 0.55508, p = 1 g/cm?) and with the vacuum boundary
condition.

In Table 29.1 we present the P n approximation numerical simulations for
the absorbed energy and comparisons with the Geant4 results [Wr01]. Bearing

Table 29.1. Absorbed energy in a rectangular domain composed by water.

Water, liquid
Domain dimensions Po Geant4 absolute relative error
10 cm x 10 cm 0.02149855 | 0.02289237 6.0885%
10 cm x 20 cm 0.02100552 | 0.02240557 6.2487%
20 cm x 10 cm 0.01845323 | 0.01971250 6.3882%
20 cm x 20 cm 0.03378688 | 0.03609384 6.3916%
30 cm x 40 cm 0.04580598 | 0.04893386 6.3921%

in mind that the Geant4 program applies the Monte Carlo technique, giving a
closer look at the results in Table 29.1, we promptly realize a good coincidence.
In Table 29.2 we display the numerical convergence of the P 5 approximation
results in a rectangular domain composed of water for increasing N. In fact,
observing the results for N = 7 and N = 9 we notice a coincidence of four
significant digits.

Problem 2. To check the influence of the material density in the absorbed
energy calculation, let us consider a rectangular domain composed of corti-
cal bone (Z/A = 0.51478, p = 1.92 g/cm?®) and with the vacuum boundary
condition.

Problem 3. Let us consider a homogeneous rectangular geometry consti-
tuted by soft tissue (Z/A = 0.54996, p = 1.06 g/cm?3) and with the vacuum
boundary condition.

In Tables 29.3 and 29.4, we present the Py approximation numerical sim-
ulations for the absorbed energy in a rectangle composed, respectively, of cor-
tical bone and soft tissue, and comparisons with the Geant4 program results,
where the maximum discrepancy found is lower than 9%. From the analysis
of the results encountered for the above problem, we promptly realize a good
agreement between the proposed methodology and the Monte Carlo technique
results. Our numerical results demonstrate that, for higher density materials,

o)) LaCaN Zyl_ﬂbl
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Table 29.2. Py numerical convergence for Problem 1.

N | 20 cm x 20 cm

1 0.02590432

3 0.03199219

5 0.03252043

7 0.03370622

9 0.03378688

Table 29.3. Absorbed energy in a rectangular domain composed by cortical
bone [IC89].

Bone, cortical (ICRU44)
Domain dimensions Py Geant4 | absolute relative error
20 cm x 10 cm [0.83789957(0.91244397 8.1697%
20 cm x 20 cm |0.79284239(0.86380422 8.2150%
30 cm x 40 cm 0.89218297(0.97249263 8.2581%

other effects must be taken into account, because when the density increases,
the number of interactions increases as well as the possibility of other pro-
cesses involving the production of secondary electrons. We must also mention
that we have done all the calculations using an AMD Athlon 1700 (1.4 GHz)
microcomputer. Furthermore, the maximum computational time observed to
generate all the results in each table was 30 minutes while the computational
time to generate the Geant4 results was approximately one day.

In this chapter we obtained a closed-form solution for the Fokker—Planck
pencil beam equation for rectangular geometries. This procedure allows us
to calculate the energy deposited by secondary electrons generated by the
Compton effect. We must recall that, to our knowledge, the Py approxima-
tion of the two-dimensional Fokker—Planck equation has not been analytically
solved yet. We must emphasize that the Py solution of the Fokker—Planck
pencil beam equation reported keeps the analytical feature, in the sense that
no approximation is made along its derivation from the Py equations, ex-
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Table 29.4. Absorbed energy in a rectangular domain composed by soft tissue

[IC89].
Tissue, soft (ICRU44)
Domain dimensions Po Geant4 | absolute relative error
20 cm x 10 cm {0.02288590(0.02440210 6.2134%
20 cm x 20 cm {0.03317010(0.03542490 6.3650%
30 cm x 40 cm {0.04951665(0.05288919 6.3766%

cept for the round-off error. Bearing in mind, besides the analytical feature
of solution, the good agreement between the results attained by the proposed
methodology with the ones of Geant4 with a small computational effort, we
are confident in stressing that this technique is quite robust and promising,
either under a mathematical or a computational point of view, to solve the
two-dimensional Fokker—Planck pencil beam equation.
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30.1 Introduction

This work was motivated by works where nonlinear parabolic functional dif-
ferential equations were considered which arise in certain applications. (See
the references in [SiJa08].) In [SiJa08], existence theorems and some quali-
tative properties were proved on solutions to initial value problems for the
functional equations (connected with the above applications)

Dyu — Z D;la;(t, z,u, Du;u)] + ao(t, z,u, Du;u) = f. (30.1)

=1

The aim of this chapter is to formulate existence theorems if certain modi-
fied (in some sense more general) assumptions are fulfilled and to show several
examples satisfying these conditions such that the assumptions of [SiJa08] are
not fulfilled. Some qualitative properties of the solutions are proved in [Si09].

30.2 Existence of Solutions

Denote by 2 C R" a bounded domain having the uniform C! regularity
property (see [Ad75]), Qr = (0,7") x £2, and let p > 2 be a real number. Let
V C WHP(02) be a closed linear subspace of the usual Sobolev space WP (£2)
(of real-valued functions). Denote by LP(0,T;V') the Banach space of the set
of measurable functions u : (0,7") — V with the norm

T
Y- /0 | u(t) |2 d.

The dual space of LP(0,T;V) is L(0,T;V*) where 1/p+1/¢ =1 and V* is
the dual space of V' (see, e.g., [Ze90]).
Aboutythe functionsyazswesmakesthe following assumptions:
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(A1) The functions a; : Qp x R"™ x LP(0,T;V) — R satisfy the
Carathéodory conditions for arbitrary fixed v € L(0,T;V) (i =0,1,...,n).

(As) There exist bounded (nonlinear) operators g, : LP(0,7;V) — RT
and k1 : LP(0,T; V) — L%(£2) such that

lai(t, 2, Co, G u)| < g1 (w)[IGoP ™ + [¢[P71] + [ka(w)](@)

for a.a. (t,x) € Qr, each ((p,¢) € R*™ and u € LP(0,T;V).
(A3) There holds the inequality

n

D lailt @, o, Gu) — ailt, @, Go, ¢ w)](Gi = ¢F) = [g2(w)](1)]¢ — ¢*IP. - (30.2)

i=1

where o
lg2(w)](t) = ¢ [1+ [ w [[ro.ev)] (30.3)

c* is some positive constant, and 0 < o* < p — 1.
(A4) There holds the inequality

n

Y ailt .z, Go, Gu)Gi = [g2(w)] ()]Gl + [¢[7] = [Ra(w)](t, @),

i=0
where ko(u) € L (Q7) satisfies (for some positive o < p — o*)
|| k2(u) ||L1(q,) < const [1+ | w ||Lp(07t;v)]a’.

(As) There exists § > 0 such that if (uy) — u weakly in LP(0,T;V),
strongly in LP(0,7; W1=%P(£2)), (¢¥) — (o in R, and (¢¥) — ¢ in R™, then
for a.a. (t,z) € Qr,

lim ai(taxacé:ack;uk) = ai(t7x7C07C;u)'
k—o0

Remark 1. Assumption (Aj) is weaker than the corresponding assumption
in [SiJa08], thus equation (30.1) may contain more general “nonlocal” terms
in this chapter. (See the examples in Section 30.3.)

Definition 1. Assuming that properties (A1)—(As) hold, we define an opera-
tor A: LP(0,T;V) — L90,T;V*) by

[A(u),v] = / {Z a;(t, x,u, Du;u)D;v + ag(t, x, u, Du; u)v} dtdz, (30.4)
Qr \i=1
where the brackets [-,-] mean the dualities in L1(0,T;V™*) and L*(0,T;V).

Theorem 1. Assume (A1)-(As). Then for any f € L9(0,T;V*) and uy €
L2(0) there exists u € LP(0,T;V) such that Dyu € L9(0,T;V*),

Dyu+ A(u) = f,  u(0) = up. (30.5)
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Proof. Clearly, (A1), (A2) imply that A is bounded, (i.e., it maps bounded
sets of LP(0,T; V') into bounded sets of L9(0,T;V*)) and demicontinuous:

(uj) = win LP(0,T;V) implies (A(u;)) = A(u) weakly in LY(0,T; V™).
(See, e.g., [Si08], [Ze90].) Further, (A4) implies that A is coercive:
[Auj), uj] = Fo00 if || uj ||Leo,m;v)— o0
because, by (A4) (for || u; [|[> 1),

C*

[A(uy), uj] >

C||P
[ Ty Tl |49 lzr0 vy
—const[1+ || u; ||pr0,75v)]7
> (¢*/2) || s o)™ — comst[1+ || u; || Logo,ry)]” — 00

as || uj || ro,r;v)— o0 since p — o* > 0.
Now we show that A is pseudomonotone with respect to

D(L) ={ue LP(0,T;V) : Dyu € LY0,T;V*),u(0) = 0}

in the sense of [BeMu92]: defining the operator L by Lu = Dyu for u € D(L),
if

uj,u € D(L), (uj)— u weakly in LP(0,T;V), (30.6)
(Lu;) = Lu weakly in L4(0,T; V™), (30.7)
lim sup[A(u;),u; —u] <0, (30.8)

j—o0

we then have
lim [A(u;),u; —u] =0 and A(u;) — A(u) weakly in L9(0,7;V™*) (30.9)
Jj—o00
because, by the well-known compact embedding theorem (see, e.g., [Li69],
[Si08]) (30.6) and (30.7) imply that there is a subsequence (u;) of (u;) such

that
(@j) — win LP(0, T; W'=%P(£)) and a.e. in Qr. (30.10)

Since (D;u;) is bounded in LP(Q7), we may assume on the subsequence (a;)
(Ditij) = Dju weakly in LP(Qr), i=1,...,n. (30.11)
Next,
[A(t;), 0 —u] = /Q ao(t,z,;, Duj;u;)(a; — u)dtde
T
n
+ Z/ la;(t, z, uj, Duj; ;) — a;(t, , 4;, Du; a,)]dtd
i=17/Qr
n

+ Z/ ai(t,x,ﬂj, Du; ’LNLJ)(DﬂNl,J - Dzu)dtda: (3012)
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The first term on the right-hand side of (30.12) converges to 0 since the
LP(Qr) norm of 4; — u tends to 0 by (30.10) and its multiplier is bounded
in LY(Qr) by (Asz). Further, the third term on the right-hand side tends to
0, too, by (30.11), because, by (30.6), (30.10), (A1), (A2), (As), and Vitali’s
theorem,

a;(t,z,4j, Du;tj) — a;(t,z,u, Duju) in LY(Qr).

Consequently, from (30.8) and (30.12) we obtain

n
limsupZ/ la;(t, z, 0, DUj; ;) — ai(t, z, 4;, Du; 4 )
j—oo i=1 T

Since (@ ) is bounded in LP(0,7;V), (As) and (30.13) imply

lim |Di; — DulPdtde = 0 and (Di;) — Du  a.e.in Qr,  (30.14)
J—00 QT

for a subsequence (denoted again, for simplicity, by (a;)). Therefore, by (A1),
(A2), (As), (30.6), (30.10), (30.14), and Vitali’s theorem,

a;(t,x, uj, Dij; ;) = a;(t, z,u, Du;w) in LY(Qr), i=0,1,...,n,

which implies (30.9) for the subsequence (%;) by (30.10) and (30.14). Conse-
quently, (30.9) holds for (u;), too (see, e.g., [BeMu92|, [Ze90]).

Since A is bounded, demicontinuous, coercive, and pseudomonotone with
respect to D(L), we obtain the assertion. (See, e.g., [BeMu92] and [Si08].)

We now formulate an existence theorem in (0, 00). Denote by L7 (0, 00; V)
the set of functions u : (0,00) — V such that for each fixed finite T' > 0,
ulo,ry € LP(0,T5V) and let Qo = (0,00) x 2, L (Qoo) be the set of func-

loc

tions u : Qoo — R such that u|g, € L*(Qr) for any finite 7.
Theorem 2. Assume that the functions

@it Qoo X R" X LY (0,00;V) = R
satisfy (A1)-(As) for any finite T and that the a;(t,z, (o, (;u)|g, depend only
on ul,ry (Volterra property). Then for any f € L(ZIOC(O,OO; V*), there exists

u € LIZ’OC(O, oo; V') which is a solution of (30.5) for any finite T'.

Theorem 2 follows from Theorem 1 if we use a diagonal process and the
Volterra property (see, e.g., [Si00]).
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30.3 Examples

In [SiJa08] examples of the following type were considered:

ai(t7 €T, CO) C; u) = b([H(u)]<t7 x))<i|<|p_2? i = 17 s 1
ao(t, , Co, G u) = bo([Ho(w)](t,2))ColCo [P~ + bo([Fo (W) (£, @) ao(t. 2, o, €),

where b, by, by are continuous, and &g is measurable in ¢, x, continuous in the
other variables, and they satisfy

Co C2
o) > — 2 b)) > —2
)= g7 0=

with some positive constants ¢ and o* <p — 1,
[bo(6)] < 1+ JOP~1—¢"
with o* <p—1, and
Jo(t, 2,60, Ol < ex(Go]® +[¢I9), 0< 6, o +o< o
Finally,
H,Hy: LP(0,T;V) = C(Qr), Fy:LF(0,T;V) — LP(Qr)

are linear continuous operators of Volterra type. Thus, [H(w)](t,z) and
[Ho(w)](t, z) may have one of the forms

/ d(t, e, 7. €ulr,O)drde,  sup / d(t, 2,7, €)|9drde < oo,
t (t,l‘)EQT T

d(t,z, 7,&)u(r,§)drdoe, sup / |d(t,x,7,§)|%drdoe < oo,
I (t,2)eQr JI'r

d(t,x,r,€) is continuous in (¢,x), I3 = (0,t) x 912 or
> dj(t,x) /Q d;(,€)Dyu(r,€)drde, d; € C(Qr), d; € LYQr).
i=1 ¢

One can show that the examples of the above type satisfy the conditions
of Theorems 1 and 2 in the case when

H,Hy: LP(Qr) — LP(Qr)

are continuous linear operators (for a fixed T' > 0 or arbitrary finite 7' > 0,
respectively) and b, by are bounded. Thus (for bounded b, by), [H (u)](t, z) and
[Ho(w)](t, z) may also have the forms given in [SiJa08] for Fp; that is,
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where

/ d(t,x, 7)u(r, z)dr, / d(t, x, &)u(t, &)dE,
0 Q

p/q

T T
/ sup l/ |d(t,x,7')|qd‘r] dt < oo,
0 zeN 0

r/q
/ sup U Id(t,x,é)lqdé] dzr < oo,
2tefo, ) L/

respectively.
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31.1 Introduction

In the last decades, the development of inversion methodologies for radiative
transfer problems has been an important research topic in many branches of
science and engineering [Go02, Mc92]. The direct or forward radiative transfer
problem in hydrologic optics, in the steady state, involves the determination
of the radiance distribution in a body of water, given the boundary conditions,
source term, inherent optical properties (IOPs), such as the absorption and
scattering coefficients, and the phase function. The inverse radiative transfer
problem arises when physical properties, internal light sources, and/or bound-
ary conditions must be estimated from radiometric measurements of the un-
derwater light field. A challenge in the inverse hydrological optics problem is
to determine the IOPs, considering only the water-leaving radiance.

The inverse problem is formulated as an optimization problem and it-
eratively solved using a recent intrinsic regularization scheme [PrEtAl04,
SoEtAl04b] coupled to an ant colony optimization (ACO). The regularization
scheme pre-selects candidate solutions based on their smoothness, quantified
by a Tikhonov norm [PrEtAl04]. Profiles generated with the wrong curvature
are filtered out using a second derivative criterion [SOEtAl09, SoEtAl07]. An
objective function is given by the square difference between computed and ex-
perimental radiances at every iteration. Each candidate solution corresponds
to a discrete chlorophyll profile.

The chlorophyll profile is reconstructed from multi-spectral water-leaving
radiances of ocean surface, following Chalhoub and Campos Velho [ChCV03].

C. Constanda and M.E. Pérez (eds.), /ntegral Methods in Science and Engineering, 327
Volume 2: Computational Methods, DOT 10.1007/978-0-8176-4897-8 31,
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Vertical values of the absorption and scattering coeflicients are estimated from
the chlorophyll profile by means of bio-optical models [Mo094], for each pixel
in the satellite image. For an ocean surface, the image contains many pixels.
However, each pixel inversion is independent from the inversion of other pixels.
This constitutes a good challenge to be addressed by the grid computing
approach. The OurGrid middleware [CiEtAl05] was used to manage these jobs
(pixel inversion). A grid infrastructure was built to perform the inversion for
each pixel, managing a queue of independent jobs submitted to three clusters
spread over Brazil.

31.2 Light Transmission in Natural Water

The radiative transfer equation (RTE) models the transport of photons
through a medium [Go02]. Light intensity is given by a directional quantity,
the radiance L, measuring the rate of energy being transported at a given
point and in a given direction. This direction is defined by a polar angle 6
(relative to the normal of the plane) and an azimuthal angle ¢ (a possible
direction in that plane). At any point of the medium, light can be absorbed,
scattered or transmitted, according to the absorption (a) and scattering (b)
coefficients and to a scattering phase function that models how light is scat-
tered in any direction. An attenuation coefficient ¢ is defined as ¢ = a + b, and
the geometrical depth is mapped to an optical depth 7. Assuming a plane-
parallel geometry, for the case of azimuthal symmetry (no dependence on j),
isotropic medium, and absence of a source term, and making the radiance
L(7, 1, ) = Ly, the one-dimensional integro-differential RTE can be written
as

d wo(r,\) ! ,
p=—=LA(T, ) + La(T, 1) = =o(r, ) / L (7, p)dy’,
dT 2 1

subjected to the boundary conditions

L(0,p) = Fo(pp — po),  La(¢, —p) = 0.

A heterogeneous medium can be modeled as a set of R homogeneous finite
layers. Optical variable 7 is discretized in R + 1 values, varying from 7 = 0
up to 7g = (, where ( is the medium optical depth. Then, for r =1,2,..., R
and p € (0, 1], the problem in this multi-region geometry can be given by

d (A !
,Ud LT,A(Tv ,u) + Lr>/\(7-> :u) = ( ) / LT»)\(Tv ,u)du’,
T 2 1

with
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constant in the region r, for any value of 7, where ¢, (), a,(X), and b,.(\) are,
respectively, the attenuation, the absorption, and the scattering coefficients,
for a given wavelength .

Bio-optical models are employed to correlate the absorption and scattering
coefficients to the chlorophyll concentration. These coefficients are assumed
to be constant in each region. Therefore, discrete values a, and b, can be
estimated for each region from the discrete values C).. Chlorophyll profiles
can be represented according to Gaussian distributions [Mo94]:

() ZC’bg—F#exp [— %(Z_Gﬂﬂ (31.1)

where z is the depth in meters and C(z) is given in mg/m?. This profile can
be seen in the results section of this work, termed ezxact. A bio-optical model
was formulated by Morel [Go84] for the absorption coefficient, and for the
scattering coeflicient by Gordon and Morel [Ch60],

ar(\) = [a® + 0.06a°CO6%|[1 + 0.2¢0-014(A~440))
br(A) = (550/A) 0.30C)%2,

where a® is the pure water absorption and a° is a nondimensional, statisti-
cally derived chlorophyll-specific absorption coefficient, and A is the considered
wavelength. The values of a* and a® depend on the wavelength and can be
found in tables [Mo94].

31.3 Inversion Scheme

The inverse problem is formulated according to an implicit approach, leading
to an optimization problem. The algorithm is expressed as a constrained non-
linear optimization problem, in which the direct problem is iteratively solved
for successive approximations of the unknown parameters. Iteration proceeds
until an objective function, representing the least-squares fit of the model re-
sults and experimental data added to a regularization term, converges to a
specified small value.

The set of parameters to be estimated is R + 1 discrete values of the
chlorophyll concentration C,., for r = 0,1, ..., R at optical depths 7,. taken at
the upper interface of the regions. Experimental data are the discrete radiances
L (19, piy Aj) fori =1,2,...,N,/2and j = 1,2,..., Ny. Therefore, the R+1
discrete values of the concentration are estimated from N, /(2 Ny) spectral
radiance values right above the sea surface. The objective function J(C) is
given by the square difference between the experimental and model radiances
plus a regularization term,

N./2 Ny
J(C) =" DL (r0, —pin \j) — Le(ro, —pas )2 +90(C), (31.2)

i=1 j=1
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where I'(C) is the regularization function, which is weighted by a regular-
ization parameter . For instance, the second order Tikhonov regulariza-
tion [TiAr77] is defined by

i
n

NC)=) (Cr—2C,11+ Crio)?
0

ﬁ
Il

31.3.1 Ant Colony Optimization

The ant colony optimization (ACO) is a method based on the collective
behavior of ants choosing the shortest path between the nest and a food
source [DoEtAl96]. Each ant marks its path with an amount of pheromone
and the marked path is further employed by other ants as a reference. Several
generations of ants are produced. For each generation, a fixed amount of ants
(na) is evaluated. Each ant is associated to a feasible path and this path rep-
resents a candidate solution, being composed of a particular set of edges of
the graph that contains all possible solutions. Each ant is generated by choos-
ing these edges on a probabilistic basis. A solution is composed of linking ns
nodes and in order to connect each pair of nodes, np discrete values can be
chosen. This approach was used to deal with a continuous domain. Therefore,
there are ns X np possible paths [4, j] available. Denoting by p the pheromone
decay rate, the amount of pheromone 7j; at generation ¢ is given by

T(t) = (1—p)Ti(t—1) t=1,2.... mit,

where mit is the maximum number of iterations.

This approach was successfully used for many graph-like problems
[DoEtAl196]. The best ant of each generation is then chosen, and it is allowed
to mark its path with pheromone. This will influence the creation of ants in
future generations. The pheromone decays due to an evaporation rate. Finally,
at the end of all generations, the best solution is assumed to be achieved.

A parallel implementation [SoEtAl04b] of the ACO-IR, (ACO with intrinsic
regularization) was executed in a distributed memory machine. Parallelization
is important since this problem is very computationally intensive.

31.3.2 Intrinsic Regularization and the Concavity Criterion

In this chapter, an ACO-based inverse solver with an intrinsic regularization
scheme [PrEtAl04, SoEtAl04b] is employed without the regularization term
(v = 0) shown in equation (31.2).

As a smooth profile is required, this is known information about the in-
verse solution. Such knowledge is included in the generation of the candidate
solutions by means of pre-selecting the smoother ants according to the sec-
ond order Tikhonov norm. Actually, a kind of pre-regularization is performed.
‘Thereforepthesusualyregularizationgterm is not required.
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Besides the smoothness, additional information is also used to compute
the inverse solution: the concavity of the chlorophyll profile, which is verified
by means of its second derivative. Since only curves with negative concavity
are expected, a penalty is assigned to profiles with positive concavity. For
each of these profiles, an overhead value is added to the evaluated objective
function (equation (31.2)).

31.4 Chlorophyll Concentration: 3D Reconstruction

We simulate a specific case with dimensions of 60 km x 60 km, and 40 meters
of depth for the ocean spatial domain. The horizontal domain is uniformly
divided into 36 smaller regions of 10 km X 10 km. There are three profiles
to be recovered in the whole domain. Each profile was generated employing
the Gaussian model given by (31.1). The parameters used to construct each
profile are shown in Table 31.1.

Table 31.1. Parameters of Gaussian chlorophyll profiles for equation (31.1).

Profile Cyy R O Zmaz
1 0.2 144.0 9.0 17.0
2 0.2 144.0 9.0 25.0
3 0.2 144.0 12.0 17.0

The concentration profiles are shown in Figure 31.1, and the profile distri-
bution is shown in Figure 31.2. As one can note, there are 20 sub-regions with
profile 1, 12 with profile 3, and 4 sub-regions which correspond to profile 2.
For each profile there is a set of radiance multi-spectral values which come
from the ocean surface. A random noise of 1% was added in the radiance
values of all regions. Each region with the same profile has a different initial
random sequence of noise values, i.e., a different seed sequence.

It is supposed that a good estimation was obtained up to the peak of the
curve (average profile) with poorer agreement to the lower part of the profile
(depth below the peak). In order to improve the inverse solution, a two-step
strategy is used: in step 1, the estimation has already been performed for the
whole profile, and then, in step 2, the reconstruction is carried out only for
the lower part of the curve. In step 2, each ant is still related to the whole
profile, but the values obtained in step I for the upper part of the water layer
are frozen. In other words, step 2 is a new inverse problem, but simpler than
the original problem, because the step 2 problem has a lower dimension and
a good first guess (obtained in step 1).

In each region, the inverse problem of recovering the chlorophyll concen-
tration profile, based on the water-leaving radiances, must be solved. As these
profilesreconstructionsyaregindependent of each other, the set of inversions is
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Fig. 31.1. Chlorophyll concentration profiles for the parameters in Table 31.1.

P1{P1|P1|P1|P1]|P1

P1|{P3|P3|P3|P3|P1

P1| P3| P2 | P2

3

P1

P1|P3 | P2 |P2|P3|P1

P1| P3| P3|P3|P3|P1

P1{P1|P1|P1|P1|P1

Fig. 31.2. Profile distribution in a spatial domain split into 36 regions of 10km x
10 km each.

treated here as a “Bag-of-Tasks” application, i.e., a fully independent set of
tasks. Therefore, the use of a grid environment to perform the inversion in
the complete spatial domain, in feasible time, was a natural choice. It was
performed with a total of 56 jobs in the grid, where 36 are in regard to step 1
profile recovering, and 20 jobs concern the step 2 reconstruction for only pro-
file 1. The jobs on the grid are assigned each pixel on the ocean surface (a
sub-domain), vectorizing the radiances associated to each pixel, and preparing
them for the inversion procedure. The process starts for the execution of the
ipt provides the jobs to the clusters.
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A grid with three clusters was geographically spread over Brazil, and
it was configured on three clusters, as described in Table 31.2. The Our-
Grid [CiEtAl05] middleware was employed in our tomographic reconstruction.
This middleware is targeted to grid computing with Bag-of-Tasks applications.
Three parts of this middleware can be identified:

Table 31.2. Hardware equipment for the “3D Ocean Color” grid.

Institution Equipment

Computing/UFSM SGI Altix XE server: 8 cores (2 Intel Xeon quad-core 2.0
GHz)

II/UFRGS Cluster Cray XD1: 4 processors AMD Opteron, 2.8 GHz

INPE/LAC Cluster Cray XD1: 8 processors AMD Opteron, 2.8 GHz

e mygrid: a user interface for job submission and execution from the home
machine;

e peer: provide the computers linked in a home machine (it is the peer
machine): the component is installed on different machines;

e useragent: run in each grid machine, these are the machines that run the
tasks on OurGrid.

The inverse solver was tested for a multi-region (R = 9) offshore ocean wa-
ter radiative transfer problem with azimuthal symmetry, using multi-spectral
radiance data, with a 1% random noise. This data is related to the emerging
radiances at the water surface and includes N, /2 = 10 polar directions for
each of the N, = 10 wavelengths. In the considered test cases, synthetic data
was used to simulate the experimental values.

The tuning of the parameters in the ACO may have a big influence on the
results. The ACO implementation required adjustment of parameters such
as the pheromone decay rate (p) and g, used in the roulette scheme. Here
p = 0.03 and go = 0 were used. A faster convergence is obtained for higher
values of p, but the inverse solution is not good. There are other parameters
in the process, such as the number of possible paths (np) between each pair
of the ns nodes, the number of ants na, or the maximum number of itera-
tions mit. These values are shown in Table 31.3, and they are used for the
test cases. The ACO was executed using na = 360 and pre-selecting 1/30 of
these ants (na, = 12) according to their smoothness. The range of search
for the chlorophyll concentration varied from 0.0003 (1.0/3000.0) up to 10.0
(3000.0/300.0).

Figure 31.3(a) shows the inversion for the 3D chlorophyll concentration to
the ocean surface containing 36 x 36 pixels, and Figure 31.3 (b) is the modulus
of the difference between the true and estimated chlorophyll concentration. It
is possible to realize that a good reconstruction is obtained up to 22 m.
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Reconstruction 3D Chlorophyll Concentration [mg/m?]
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Fig. 31.3. Chlorophyll concentration: (a) estimated, (b) difference from the real
value.
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Table 31.3. Seeds and ACO parameters.

Seeds (10) 3, 15, 21, 31, 45, 63, 77, 81, 95, 99
ns np na nap mit p q0
10 3000 360 12 400 0.03 0.0

ACO parameters

The accumulated middleware cluster time (7},) is defined here as the overall
runtime of jobs submitted to grid nodes by OurGrid middleware. Such accu-
mulated time corresponds to a sequential execution of a job set. Table 31.4
presents 1}, measures for each cluster during our experiment. This experiment
consisted of 56 jobs and required 21:34 hours to complete, as shown in Ta-
ble 31.4. All time measures presented here were extracted from the OurGrid
log file, which registers the start/end time for each job.

Table 31.4. Accumulated cluster time (hours).

Cluster Jobs T, Tp/Jobs
(hh:mm) (hh:mm:ss)

Computing-UFSM 30  07:20 00:14:40

II-UFRGS 9 06:48 00:45:20

INPE/LAC 17 07:26 00:26:11

56 21:34 00:23:06

Table 31.4 also presents the average duration of a single job on each clus-
ter and for the whole experiment. This analysis shows that each cluster has
a different job execution rate. The first cluster (Computing-UFSM) presents
the shorter runtimes, which can be explained by its shared-memory multicore
architecture, which reduces communication costs for the parallel program im-
plementing the ACO. Since computations are eventually overlapped in time
(up to the number of available grid nodes), and the time of grid usage de-
manded to perform the whole set of jobs is defined here as grid elapsed time
(Ty), which is naturally shorter than T},. For the experiment we consider here,
the grid elapsed time was 07:43 hours. The ratio T},/T, gives the speedup
for the grid execution, which is 2.79 for this experiment.

31.5 Conclusion

In this work, we tested the feasibility of recovering different kinds of chloro-
phyll profiles, in a given spatial domain in the ocean, from basically two points
of view: the accuracy of the reconstruction, and also as an application that
can intensively use a grid environment.
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By distributing the jobs over the grid, we have effectively reduced the time
needed to obtain the results. The grid was easily deployed using the OurGrid
middleware, which scheduled the job set onto the available grid nodes. The
cluster usage statistics can be calculated from the ratio between T}, (for each
cluster) and Tj. These statistics confirm that each cluster was busy most of
the time, although there is still room to improve the grid usage. The perfor-
mance gain could be even better, considering that not all the clusters were
simultaneously used all the time.
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32.1 Introduction

A new method, “wave confinement” (WC), is developed to efficiently solve
the scalar wave equation on a discretized domain. This method is similar to
the originally developed method, “vorticity confinement,” which is used to
solve a vast range of fluid dynamics problems [StWePu95]. WC involves mod-
ifying the discretized wave equation by adding a nonlinear term to generate
traveling “dissipative solitary” waves that are stable to perturbations due to
numerical effects, such as dissipation and dispersion. As the present study
involves treating thin waves propagating long distances, on feasible computa-
tional grids, the propagating functions cannot be more than 2—-3 cells wide. In
these cases, since the accuracy of conventional higher-order schemes increases
only as the number of points across the pulse becomes relatively large, they
are not useful. Often, for these cases, the main quantities of interest in the
far field are the integrated amplitude and the motion of the centroid surfaces
(which we use to represent wave fronts), rather than the details of the internal
structure of the pulse. For realistic problems, these pulse surfaces can have
multiple sources and scattering surfaces, propagate through regions with a
varying refraction index, and have complex topology. Accordingly, we only
consider Eulerian methods, where such general surface topologies can auto-
matically be treated with no need for complex “surface fitting” or adaptive
grids.

WC has the potential to greatly extend the range of application of existing
computational methods for certain problems. The new method has many of
the advantages of Green’s function-based integral equation methods for long-
distance propagation, since the propagation distance can be indefinitely long.
However, unlike Green’s function schemes, which are most useful for a uniform
index of refraction in simple domains, WC allows short pulses to automatically
and efficiently propagate through regions with a varying index of refraction
and undergo multiple scattering in complex domains, since it is an Eulerian
finite difference technique.

C. Constanda and M.E. Pérez (eds.), /ntegral Methods in Science and Engineering, 339
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32.2 Approach

WC involves treating a thin feature, such as a pulse, as a type of weak solu-
tion of the governing partial differential equation (PDE). Within the feature,
a discretized nonlinear PDE is solved, whose solution can be as thin as 2-3
grid cells, so that it does not necessarily represent an accurate Taylor ex-
pansion discretization of the PDE, yet retains the essential physical features.
The approach is similar to shock capturing [La58|, where conservation laws
are satisfied, so that integral quantities such as total amplitude and centroid
motion are accurately computed for the feature.

32.2.1 WC as a PDE
For simplicity, we first consider a scalar, ¢, advecting at a constant speed c:
Opp = —cOz . (32.1)

Our basic point is that there will be errors when we discretize equation (32.1)
using conventional schemes based on Taylor expansions. When we confine the
pulse solution to ~ 2-3 grid cells, which is our goal, the derivatives of ¢ and
hence these “errors” will be large. Also, corresponding to the small number of
grid points within the pulse, there will be only a small number of quantities
that we can conserve. Adding a term E = 92F ({¢}) to (32.1) that vanishes
at the boundaries, along with derivatives, will not affect the conservation of
these quantities, which include the total amplitude

A= /d)dw, (32.2)
and the speed of the centroid
d{z) [ oc(x)dx

dt A ’
d
where the centroid is (z) = %. To preserve these essential physical char-

acteristics of (32.1) for a short convecting pulse, we want E to satisfy a set
of conditions described above. In addition, it should be homogenous of degree
one, so like the original PDE, the dynamics of propagation does not depend
on the magnitude of ¢. This is an important distinction of the WC equa-
tion. Many nonlinear equations use nonhomogenous terms for the nonlinear
term [RoHySt07]. In fact, Cahn and Hilliard in 1958 used such a nonlinear
term under a second derivative as in our equation, but one that was not
homogenous [CaHi83]. The PDE in (32.1) with the confinement term is

O1p = —cOpdp + O2F. (32.3)

One example of F' that proves to be stable is
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o«
=2

where 1) = ¢! and ) is a constant that defines the width of the pulse. Using
the chain rule, we have

F [02¢ — Ay,

¢

Then, we define the three “confinement” terms, F' = Fy+ F} + Fy, where Fy =

—aXd2¢ and Fy = —adl¢ are linear, and Fy = 20?2 (%) is nonlinear. It

is interesting that the second-order term, Fp, in (32.4) behaves in a different
way from most popular nonlinear PDEs, such as KdV, that harbor solitary
wave. In these, the linear term is the “expansion” term, and the “contraction”
or “steepener” term is the nonlinear Burgers-like convection: (9,¢%/2). In WC,
the linear second-order term, Fj, acts to contract the pulse, and the nonlinear
term, Fy, prevents ¢ from changing sign and transfers the amplitude from
large wavelengths to small. The higher-order term, Fj, acts as diffusion for
short wavelengths and prevents the pulse from diverging. In the convecting
frame of the pulse, ¢ = 2 — ¢t, the PDE becomes the heat equation

O = OZF. (32.5)

2
Op = —cOpdp — aNI2p — 02 (aggb - 2M> . (32.4)

When (32.5) converges, the pulse then relaxes to the form

¢ — ¢osechB(€ — &),

where § = \/X, and ¢¢ and &y are arbitrary constants. An important point
is that wavelengths created by perturbations (such as numerical errors) that
are longer than the thin features that are to be confined must have a negative
diffusive behavior, so that the features remain confined, and are stable to
perturbations against spreading. This means that F, must be nonlinear. It is
easy to show by von Neumann analysis that a linear combination of terms,
with a negative lower-order dissipation, cannot lead to a stable confinement for
any finite range of coefficients: any wavelength that exhibits negative diffusion
would eventually diverge.

The appearance of ¢ in the denominator of (32.4) makes F» diverge as ¢ —
0. This prevents ¢ from changing sign. Since A in (32.2) is conserved, the inte-
gral of ¢ over any finite region cannot then diverge. In the discretized version
defined below, none of the grid values can diverge. This ensures realizability
if ¢ is a physical quantity. Smolarkiewicz [Sm83| also has rearranged the dis-
cretized convection equation so that there is such a term in the denominator
for this reason.

32.2.2 Discretized Representation: 1D Scalar Advection

One discretized formulation of the PDE given in (32.3) can be written in the
form
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n+1l _ v n 2 1
Bt = 6 — 5 (Br — $) + a2 E (32.6)
where 5]2-j'j = fic1—2f;+ fi—1, v = CTAt, a= %7 At is the time step, and

h is the grid cell size. Many conventional schemes can be put in this form,
where F' adds a (typically linear) stabilizing dissipation. However, the role of
F is very different here. The confinement term, F, is defined as

F' = pg?? — =47,

where @ is a nonlinear function of ¢ (given below) and p is a diffusion co-
efficient that can include numerical discretization effects in a conventional
convection or wave equation solution (we assume physical diffusion is much
smaller). ¢ is a numerical coefficient that, together with u, controls the size
and time scales of the confined features. For this reason, we refer to the two
terms as “confinement terms.”

There are many possibilities for @ on the grid. A simple class is

1 n y—17"1
P >
N :

: (32.7)

The above sum is over a set of N — 1 neighboring grid nodes and the node
where @ is computed. Upon Taylor expansion, we wish to recover the PDE
given by (32.4) in the fine grid limit. The two (positive) parameters, ¢ and p,
are determined by the two small scales of the computation, h and At, since we
want the small features to relax to their solitary wave shape in a small number
of time steps and to have an effective support of a small number of grid cells.
Thus, even though h may be small, the Laplacian will be large and the total
effect also large. At convergence, u¢ —® ~ 0 (not exactly zero because the
convection term is continually adding a perturbation). The solution to the
above equation that vanishes in the far field is then

¢ — ¢posech [y(j — jo —vn)],

where jg is the approximate initial position of the centroid and ¢q is an arbi-
€

trary constant. The pulse width coefficient, «y, is a function of — and is given

as a

1

cosh(v) = =

@ - 1) |
2\ p

A pulse, which is (in this example) initially a (Kronecker) delta, is solved
using (32.6) with periodic boundary conditions, and compared to the solution
of a higher-order, conventional method. For this computation, the parameters
used are v = 0, u = 0.2, and € = 0.3. As can be seen in Figure 32.1, the
higher-order method quickly spreads the pulse to many grid cells while WC
keeps the pulse (effectively) compact.
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Fig. 32.1. Pulse with WC compared to higher-order method.

32.2.3 Wave Equation

We start with the one-dimensional (1D) scalar wave equation with constant
wave speed, ¢, for simplicity. As in scalar convection, we add an additional
term to control the shape of a short pulse. We take the wave equation analog
of the dissipative form used in the advection equation:

02 = 202¢ + 0,0°F,
or, using a simple time discretization,
2 262 2

where 0, f" = f* — froL 2 = fr—2fn Tl 4 2 g = Ah—t;. It was seen
above and in other works [StDiHa], that the addition of WC terms in the form
of second derivatives of a function that has short range do not change the
propagation speed (or the total amplitude) of an advecting, confined pulse.
The same is true for the wave equation, if an additional time derivative is
applied. The main constraint on the confinement term, F', as in advection, is
that it force an initial isolated, propagating short range pulse with a single
maximum to remain short range and also not develop any additional maxima.
We again use F" = ug™ —e®@", where @ has the form given by (32.7) in terms
of its argument.

Results for the 1D wave equation are shown in Figure 32.2. When p =
0 and € = 0, the solution is dispersive. Adding a small quantity of positive
diffusion, = 0.2, will smooth the solution but it will be highly dissipative.
To overcome anomalous dissipation, the confinement term is added, which
will stabilize the solution. An important feature of the method is that the
waves do not suffer a “phase shift” when they pass through each other, like
most soliton solutions. This is an obvious requirement for the equation we
want to simulate—the linear wave equation. However, the confinement term
is nonlinear. Such a phase shift would ordinarily show up as a kink in two
waves in two or three dimensions that are passing through each other. Results
forthe,centroiditrajectoriesfortiwoswave equation pulses passing through each
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Fig. 32.2. Wave equation solution.

other in 1D are presented in Figure 32.3. It can be seen that there is no phase
shift to plottable accuracy in spite of the nonlinearity. The pulses seem to be
effectively transparent to each other (after a short relaxation time).

300F —  Forward Propagation

"""" Backward Propagation
200F

—150
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50

3000
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Fig. 32.3. Centroid positions of forward and backward propagating pulses.

The extension to multidimensions is almost trivial. We simply substitute
a multidimensional Laplacian in the original wave equation and use a multidi-
mensional harmonic mean, where we sum inverse values of ¢ over the central
point and the N — 1 neighboring grid points on the multidimensional grid.
If we consider a straight, 2D propagating pulse aligned at an angle, 8, where
6 is arbitrary and propagating in the normal direction (for isotropic media),
the solution at convergence is

¢i.; = ¢osech [y (ri; —r0)],

where r — rg is the distance from a point (grid point in the discrete case) to
the centroid along 6. As before, ¢q is arbitrary and + is given for a 2-D planar
pulse at an angle 0, on a grid by

€ _ [1+2cosh(yhcost) + 2cosh (ahsin )]

)
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where we take the number of grid points in the sum, N (central and nearest
neighbors) to be 5.

32.3 Results

32.3.1 Propagation/Planar Reflection

A circular wave propagating inside a 2D square domain with reflecting bound-
aries is shown in Figure 32.4. It is obvious that the wave does not deteriorate

250 250 250
200 200 200
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() ) (e
100 100 100

50 50! 50

e
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
X X X
(a)n=0 (b) n=300 (¢) n =600

(d) n =900

Fig. 32.4. 2D wave equation solution.

even after many reflections. Most discretization effects should appear as a
deviation from circular symmetry, since the grid is Cartesian. No such ef-
fects appear, to plottable accuracy. Ray tracing techniques also suffer from
numerical dissipation as interpolation techniques have to be used to add and
fit markers to approximate a continuous wave as the curve lengthens. The
method we use is very different from converging methods, as we are converg-
ing the local function of the grid to 2-3 grid cells. So, in the fine grid limit,
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it remains spread over the same number of grid cells and requires no logic
to treat or “fit in” marker points. It can be seen in Figure 32.4 that there
are also no curvature effects to plottable accuracy. Also, as in 1D, there is
no discernable interaction between intersecting waves. The waves retain their
form and orientation in spite of multiple head-on collisions. Long-distance
propagation in 3D is simulated for an expanding, initially spherical wave and
is shown in Figure 32.5. The computation is done on a coarse, 642 cell grid

Fig. 32.5. 3D wave equation.

with periodic boundary conditions. The initial diameter for this computation
is 16 grid cells. Ray tracing techniques become highly complicated in 3D when
there are multiple intersecting surfaces. Robust interpolation methods then
have to be used to fit the surfaces.

32.3.2 Focusing Waves

WC is also applied to converging/focusing waves (also in 2D). Here, there are
a number of conserved variables which allow the propagation of waves through
the focusing regions and automatically reconstruct the waves after focusing.
A focusing elliptical wave front is computed and is displayed as amplitude
contours. The elliptical centroid line is initially

DROR

where (ig,jo) is the center of the domain, a = 32 and b = 20. For an ac-
curacy check, the results are compared to the results of a ray tracing, using
Lagrangian markers. In Figure 32.6, amplitude contours are compared to La-
granglan markers (these are exact solutions in the high frequency approxima-

! can be seen that the basic information
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Fig. 32.6. Focusing elliptical wave.

defined by the initial conditions is not lost, even though only the simple Eu-
lerian algorithm was used, with no additional logic, and the grid was not fine
enough to resolve the focusing. Since the interest is in the long-distance prop-
agation (after the focusing), the detailed resolution at the focusing itself is
not an issue.

32.3.3 Varying Index of Refraction

Another important study involves the pulse speed in nonuniform index of
refraction fields. An initially straight pulse (again 2D), propagating through
a region with refractive index defined as

Yinems sy ¢ 0001 —50)%)
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is simulated by means of the equation

hy =200 0 VP (V60) + 0 VP

]

where 7* = 07 + d7. Tt is observed that the isolated pulse trajectory is cor-
rect with no diffusion or dispersion when compared to accurate ray tracing
computations. It is also seen that information is not lost in spite of a limited
density of grid points across the focusing regions. It can be further seen that
in the far field, ray tracing techniques cannot continue to describe the wave as
a smooth surface. Also, unlike ray tracing schemes, which suffer from scarcity
of grid nodes in the far field, WC can still capture waves as smooth surfaces
without complex logic involving allocation of new markers and interpolation.
A comparison is shown in Figure 32.7, in which the smooth contours are cal-
culated by the confinement method and compared with ray tracing (depicted
as “blobs”).
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Fig. 32.7. Propagation of plane wave through regions of varying index of refraction.

32.4 Conclusion

A method, “wave confinement,” has been described which propagates thin
wave equation pulses. The pulses are solutions to the scalar wave equation
with an added nonlinear term. When discretized on an FEulerian grid, the
pulse solutions are represented as thin “shells” in 3D and wavefront “curves”
in 2D, which remain only 2-3 grid cells thick, and propagate indefinitely as
nonlinear solitary waves with no numerical spreading. As such, they serve to
accurately transport total amplitude, integrated along a normal, and com-
pute arrival times at each grid point. These pulses can accurately propagate
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33.1 Introduction

In this chapter, we focus on the numerical solution of large eigenvalue problems
arising in finite-rank discretizations of integral operators.

Let X be a Banach space over C and T a compact linear operator defined
on X. We aim to solve numerically the eigenvalue problem

To = Ao,

with A nonzero and ¢ defined in X. Approximations A, and ¢,, for the
spectral elements of the integral operator can be obtained by solving

Tm(pm = 9m<Pm7

where (T,) is a sequence of finite-rank operators converging to 7' [AhLa01].
By evaluating the projected problem on a specific basis function, it is reduced
to a matrix spectral problem

Apn@m = O, (33.1)

for a finite matrix A,,, [AhLa06].

In what follows, we review the numerical computation of solutions of (33.1)
using state-of-the-art numerical methods implemented in publicly available
software packages, assembling previous results from [VaMa08] and [VaRo08|.
Emphasis is given to parallel strategies provided by ScaLAPACK [BICh97]
and SLEPc [HeRo05]. Numerical experiments are performed on a weakly sin-
gular integral operator, where A,, is large and banded. Direct methods for
the computation of the whole spectrum and iterative methods to compute a
(small) set of eigenpairs will be presented.

The chapter is structured as follows. Section 33.2 presents the computer ar-
chitecture specificationsjusedsforthesperformance results. Section 33.3 includes
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a brief discussion of the software strategies to tackle this kind of problem. An
illustrative example is then given in Section 33.4. Section 33.5 presents some
numerical results along with some conclusions and insights on how to solve
similar problems.

33.2 Hardware: Parallel Machines

The numerical tests used for analyzing the performance of the codes have
been carried out on four computing platforms.

Bassi is an IBM p575 POWER 5 system located at NERSC, the US Na-
tional Energy Research Scientific Computing Center. It is a distributed mem-
ory computer with 888 processors. The processors are distributed among 111
compute nodes with 8 processors at 1.9 GHz per node. Processors on each node
have a shared memory pool of 32 GBytes. The compute nodes are connected to
each other with a high-bandwidth, low-latency switching network. Each node
runs its own full instance of the standard AIX operating system. Jacquard,
also located at NERSC, is an AMD Opteron cluster with 356 dual-processor
nodes, 2.2 GHz processors, 6 GB of memory per node, interconnected with a
high-speed InfiniBand network.

GridUP is an AMD Opteron 250 cluster with 24 dual-processor nodes,
with a total of 48 processors at 2.4 GHz. The nodes have 4 GB of memory
each, and they are interconnected via Gigabit Ethernet network. This system
belongs to Universidade do Porto and is part of the Portuguese national grid
infrastructure.

The Odin cluster, located at Universidad Politécnica de Valencia, has
55 nodes with dual Pentium Xeon processor at 2 GHz with 1 GB of memory
per node, with a total of 110 processors. The nodes are interconnected with
a high-speed SCI network with 2D torus topology.

33.3 Software: Numerical Methods and Libraries

In order to compute the solution of large scale eigenvalue problems on par-
allel computers, we can develop a parallel program using MPI, the message
passing interface standard for programming distributed-memory parallel com-
puters [GrLu99], and make use of parallel libraries that are based on that
paradigm. T'wo types of numerical strategies are available: direct and iterative
methods. Here we employ direct methods implemented in the ScaLAPACK
library (Scalable Linear Algebra PACKage [BICh97]), and iterative methods
implemented in SLEPc, the Scalable Library for Eigenvalue Problem Compu-
tations [HeRo05], to compute a few eigenpairs. These are open source software
packages available in the ACTS Collection of the US Department of Energy
(DOE) [DrMa05)].
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ScaLAPACK does not currently provide any expert driver for the eigen-
solution of band matrices. This means that the problem must be treated as
a general one. In the symmetric case, one can call the expert driver subrou-
tine pdsyevz that handles the reduction to tridiagonal form followed by the
computation of the eigendecomposition of the generated tridiagonal. In the
nonsymmetric case, the user has to explicitly call subroutines for the two
steps: first reduction of the matrix to Hessenberg form by calling the subrou-
tine pdgehrd (which applies orthogonal similarity transformations) and then
computing the Schur decomposition of the Hessenberg form by calling sub-
routine pdlahgr (which uses the QR algorithm).

Concerning SLEPc, it provides a number of eigensolvers that are appro-
priate for large sparse eigenproblems in which only part of the spectrum is
required. We used a version of the Krylov—Schur method [St01], which is
a faster variant of the Arnoldi algorithm. Additionally, SLEPc allows the
transparent use of other eigensolver libraries such as ARPACK [LeS098] and
PRIMME [St07]. In order to enhance convergence of the iterative eigensolvers,
SLEPc provides a built-in implementation of the shift-and-invert spectral
transformation technique. For the solution of the linear systems involved, the
user can employ different solvers such as GMRES and different precondition-
ers, including those provided by external libraries (e.g., hypre [FaYa02]).

Some platforms have specifically tuned versions of some libraries. On Bassi
we used the BLAS available in PESSL (Parallel Engineering and Scientific
Subroutine Library), a mathematical subroutine library from IBM designed
to provide high performance for numerically intensive computing jobs running
on IBM systems. It is IBM’s parallel analogue of its serial library ESSL. Al-
though PESSL contains a subset of ScaLAPACK, we have used our own full
installation of ScaLAPACK. On other computer architectures, optimized li-
braries exist such as MKL for Intel processors and ACML for AMD processors
(as is the case for Jacquard).

33.4 Illustrative Example

We consider an eigenvalue problem, issued from a real application [Ru04]
and [AhAl102], where the integral operator T : X — X, X = L([0,7*]), is
defined by

@) () =5 [ Bl =D ein, re o).

The kernel of the integral operator, which is weakly singular, is defined
through the first exponential integral function

Ey (1) :/ Mdu, 0<7<7,
1 H
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and depends on the albedo, w € [0, 1].

Defining a grid of m points, 0 = 7,0 < Ty1 < -+ < Trpm = T7°, We build a
finite-dimensional subspace given by X,, = span{ep, ; : j =1,...,m}, where
em,j = 11 7 € |7y j—1,Tm ;[ and 0 otherwise. Defining the projection

m
Tm$ = Z<SD> e;kn,j>em7j7

=1
where

. 1 / N
JE i) = Tdr',
(. €m.5) P e(7')
Tm,j—1
we compute
Tmp =mmTe.

Finally, the spectral problem for the finite-rank operator is reduced to a
spectral problem for an m x m matrix by considering A, (i, ) = (T'em,j, €5, ;)
[AhLa06].

For the tests, we consider w = 0.75, 7* = 8000, and m ranging from 8000
to 64,000. The larger values of m are only possible using iterative methods
on parallel machines and with appropriate linear algebra kernels to deal with
sparse matrices.

The coefficients of A,,, decay in magnitude significantly from the diagonal,
and for practical purposes A,, can be considered a band matrix. For a fixed
7*, the bandwidth increases with larger values of m. For very large values of
m such as 32,000 or 64, 000, the storage and computational effort required for
building the matrix and solving the problem is high. For practical purposes,
this implies the use of an increasing number of processors.

33.5 Numerical Results

In this section, we present some results for the different approaches described
above. We used a relative error £ < 10712 for the iterative method in order
to obtain solutions as “accurate” as the direct method and therefore perform
a more realistic comparison of the algorithms’ computational performance.

Let us begin by considering nonuniform grids on the interval [0, 7*], leading
to nonsymmetric matrices.

In Table 33.1, we present the times for the computation of the full spec-
trum of matrix Agggg with the direct methods provided by ScaLAPACK in
two machines, Bassi and GridUP. The generation of Agggg on the GridUP
machine was much faster than on Bassi, as a direct consequence of the faster
processor. In contrast, the timings for ScaLAPACK were better in Bassi, and
with greater speedup (the ratio of the computing time with one processor over
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Table 33.1. ScaLAPACK timings (seconds) on Bassi and on GridUP for nonsym-
metric Asooo: number of processors (p), generation of the matrix (GEN), reduction
to Hessenberg form (pdgehrd), and Schur decomposition (pdlahgr), on up to 16 pro-
CEeSSOTS.

Bassi GridUP
GEN pdgehrd pdlahgr | GEN  pdgehrd pdlahgr
308.4 1504.4  2389.9 |196.25 5192.1 7315.5
154.1  875.7 1801.2 | 97.90 4955.1  5569.5
76.9 466.7 1235.4 | 48.71 3614.8  4609.7
38.6 2358 908.8 | 23.96 2072.6 2567.6
19.3 108.3 834.8 11.88 14539  5659.8

—_
o 0BT

the computing time with p processors). The reason for this is that on Bassi
we used the optimized BLAS from the PESSL library.

For larger values of m, it is very computationally expensive to obtain the
whole spectrum. To have access to a subset of the eigenvalues, we can use
iterative methods, such as those provided by SLEPc.

Table 33.2 shows execution times for different matrix sizes on Odin. The

Table 33.2. SLEPc timings (seconds) on Odin for nonsymmetric A,,: number of
processors (p), generation of the matrix (GEN), 5 largest eigenpairs using Krylov—
Schur method, for several values of m on up to 32 processors.

m P GEN Krylov—Schur
8000 1 522.21 110.66
2 214.57 72.40
4 91.41 38.44
8 35.23 21.60
16 17.61 16.25
32 7.08 29.77
32,000 1 3964.10 1907.42
2 2020.84 936.54
4 1070.76 415.12
8  542.73 237.47
16 277.57 158.03
32 143.40 123.44
64,000 2 8474.29 -
4 4565.43 1355.83
8  2397.99 650.20
16 1225.71 312.64
32 665.30 201.70

results show good speedup for all values of m, both for matrix generation and
elgencomputatlon except for the smallest value of m with 32 processors (not

Ol LE ‘UI—lLI

ssor compared to communication time).
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One can infer that the code is reasonably scalable because a good speedup is
maintained when the number of processors grows together with an increase
of the problem size. The missing values correspond to cases where there is
not enough physical memory to store the matrix and other auxiliary data
(m = 64,000 with one and two processors).

We also compared the performance of Krylov—Schur to ARPACK. For this
problem, the latter requires a larger Krylov subspace to converge, and this
has a direct impact on the computation time. For instance, for m = 8000
using 16 processors, ARPACK took 78.57 seconds to compute the largest five
eigenvalues.

The larger the value of m, the smaller the separation of the eigenvalues,
so Krylov eigensolvers will have more difficulties. To cope with this, it is
necessary to increase the dimension of the Krylov subspace, which means an
increase in memory requirements.

Convergence can be improved if a reference value that is close to the wanted
eigenvalues is known. Table 33.3 presents results for the shift-and-invert tech-
nique. These runs need much fewer vectors for the basis. In this case, the

Table 33.3. SLEPc timings (seconds) on Odin for nonsymmetric A,,: number of
processors (p), 5 largest eigenpairs using Krylov—Schur method with shift-and-invert
for several values of m on up to 32 processors. Linear systems are solved with
GMRES and different preconditioners (its is the accumulated number of iterations
of the linear systems).

m p| Block Jacobi AMG

time 1ts time 1ts

32,000 1| 23.03 46 136.50 201
2| 23.73 160 67.36 182

4| 83.89 1279 | 44.59 207

8| 211.16 7073 | 23.20 207

16| n/c n/c 18.90 244

32| n/c n/c 10.88 215

64,000 2| 109.48 161 | 277.69 206
4| 316.73 1343 | 180.88 224

8| 765.75 7034 | 105.23 226

16| n/c n/c 65.91 258

32| n/c n/c 35.30 229

eigensolver is applied to the operator (A4,, — w@l)~! to compute eigenvalues
closest to w. The inverse of A,, — wl is handled implicitly by solving linear
systems within the eigensolver iterations. We have chosen to solve these linear
systems with GMRES combined with two parallel preconditioners, as follows.
Block Jacobi consists in computing an incomplete LU factorization without
fill-in for each diagonal block (in our case, one block per processor). This
preconditioner is easy to implement in parallel, but it loses efficiency when
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the number of blocks is increased. This is the reason why in the case of 16
and 32 processors some linear solvers have reached the maximum number of
allowed iterations, resulting in an insufficient accuracy in the computed eigen-
pairs (in the table, “n/c” indicates this circumstance). A preconditioner with
a better scaling is the algebraic multigrid (AMG) preconditioner [HeYa02], as
shown in the table.

We now consider the case where a regular grid induces a symmetric matrix.
Symmetric eigenproblems are more common in practice, and more methods
and software are available for this case.

Table 33.4 shows timings on Bassi for symmetric Agggg, for the computa-
tion of the full spectrum (eigenvalues only). As before, the generation of A

Table 33.4. ScaLAPACK timings (seconds) on Bassi for symmetric Agpoo: genera-
tion of the matrix (GEN), and eigencomputation (pdsyevz), on up to 16 processors.

p GEN pdsyevz
1 310.0 418.7
2 154.5 478.8
4 774 3221
8 388 165.2
16 194 79.8

scales well with an increasing number of processors. The scaling of the eigen-
solution phase is satisfactory for p > 4. Interestingly, the eigensolution phase
takes more time on two processors than on one processor, which suggests a
poor load balancing given the dimension of the matrix.

Table 33.5 shows timings on Jacquard for symmetric A of different sizes, for
the computation of the five largest eigenvalues and corresponding eigenvectors.
The scaling of the eigensolution phase is similar to the one observed on Bassi.
A 2D block cyclic distribution for A might lead to a better performance,
but we anticipate that for much larger matrices a direct method would be
impractical. This is mainly because of the costs required for the reduction of
A to tridiagonal form as part of the eigensolution strategy. If required, the
computation of all eigenvectors of A from the eigenvectors of the tridiagonal
would also add to the costs.

Table 33.6 shows results for iterative methods for the symmetric case,
where in addition to Krylov—Schur we have considered a Davidson-type eigen-
solver implemented in PRIMME [St07]. For the generation of the matrix, we
exploit symmetry and have to compute only half of the matrix elements. Fur-
thermore, we optimize the generation by making use of a small software cache
mechanism that stores recently computed integral values. In this way, we can
avoid up to 75% computation time in some cases. This mechanism was also
present for the nonsymmetric case, yet the percentage of cache hits was far
smaller.
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Table 33.5. ScaLAPACK timings (seconds) on Jacquard for symmetric Ar,: gener-
ation of the matrix (GEN), and eigencomputation (pdsyevz), on up to 64 processors.

GEN pdsyevz
41.6 1374
21.2 2714
104  206.7
5.2 128.4
2.5 76.6
84.5 22719
41.7 1459.1
20.8 881.8
10.1  499.1
5.1 285.2
83.7 5511.1
40.4 28794
20.3 1656.9
10.2  945.0
32000 32 81.4 11210.0

64 40.7 6580.1

4000

8000

w = —
e =N ] =g RN R S

16000

D W =
=N O

Table 33.6. SLEPc timings (seconds) on Odin for symmetric A,,: number of pro-
cessors (p), generation of the matrix (GEN), 5 largest eigenpairs using Krylov—Schur
method, and 5 largest eigenpairs using PRIMME, for several values of m on up to
32 processors.

m D GEN  Krylov—Schur PRIMME

8000 1 39.61 135.68 40.79
2 29.92 66.80 23.88
4 16.86 34.17 13.02
8 9.08 16.14 9.30
16 4.68 27.40 20.38
32 2.41 29.71 22.09

32000 1 1885.17 1446.70 799.78
2 1403.00 550.65 351.01
4 815.04 249.54 214.65
8  435.45 160.43 102.33
16 224.75 74.11 72.85
32 114.57 69.91 48.13

64000 1  7913.90 - 2655.99
2 6054.33 1784.94 1503.41
4 3543.23 943.70 975.45
8 1894.70 447.77 408.31
16 975.14 236.56 355.60
32 500.20 145.92 139.37
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In these tests, most of the time PRIMME was faster in computing the
eigenpairs than Krylov—Schur, particularly when the number of processors is
small. As the number of processors grows, both solvers show similar perfor-
mance. We must emphasize that these results were obtained with a smaller
subspace dimension than in the nonsymmetric case.

Table 33.7 shows results for shift-and-invert with a symmetric matrix.
Similarly to the nonsymmetric case, the AMG preconditioner is very effective
and results in very good speedup, because the number of iterations required
by the linear systems is moderate and almost constant for different numbers of
processors. Block Jacobi still has difficulties for large numbers of processors,
although in this case it was able to compute the solution to the required
precision.

Table 33.7. SLEPc timings (seconds) on Odin for symmetric Ay,: number of pro-
cessors (p), b largest eigenpairs using Krylov—Schur method with shift-and-invert for
several values of m on up to 32 processors. Linear systems are solved with GMRES
and different preconditioners (its is the accumulated number of iterations of the
linear systems).

m p| Block Jacobi AMG
time its time  its
32000 10.18 41 75.09 133

1

2| 12.43 153 | 34.52 136

41 35.26 977 120.23 161

8| 91.48 4641 |11.80 178
16| 77.20 8162 | 9.53 170
32| 73.99 12717 | 7.73 184

64000 1| 63.96 46 |231.18 122
2| 56.58 160 [118.97 132
4112067 974 | 62.58 139
81241.09 3963 |33.86 151
16| 238.66 7455 | 24.76 175
32| 213.47 12831 | 15.82 185
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34.1 Introduction

In the developments of nuclear energy, new reactor concepts are being pro-
posed and explored, where innovative ideas need to be tested by means of
simulations. Although the original neutron calculations start from a trans-
port equation, many approaches reduce the calculation to diffusion equations,
since the Boltzmann equation for neutron transport is still considered a chal-
lenge (see, for example, [Le05], [Se07], and the references therein). A detailed
sequence, starting from a neutron transport equation (Boltzmann equation)
until the reduction to a diffusion phenomenon using Fick’s hypothesis, is given,
for instance, in [Se07]. Our principal concern here is an effective analytical
method for the general perturbed neutron diffusion equation by an integral
transform technique. To this end, we present a procedure that allows us to
construct an analytical solution of the multi-group neutron diffusion equa-
tion in Cartesian geometry using well-established integral transform proce-
dures [He05]. Once the general structure of the solution is determined, we
may directly calculate the neutron flux (which is an analytical expression),
and the only quantity which is determined numerically at the end of the cal-
culation is criticality. In what follows we present the procedure, considering
a generic multi-group calculation for an arbitrary number of energy intervals.
Due to the fact that the geometric extension of the reactor core is typically
very much larger in one dimension compared to the other two length scales,
we may cast the calculation into a two-dimensional (2D) setting.

34.2 The Multi-Group Diffusion Equation with
Constraints

The general multi-group diffusion problem in two dimensions is given by the
equation system

C. Constanda and M. Eugenia Pérez (eds.), Integral Methods in Science and Engineering, 361
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L& =S, (34.1)

where L represents the local nonhomogenecous diffusion operator and in-
cludes particle multiplication from fission, ® = (¢1(z,y),...,oq(z,y))"
signifies the local multi-group neutron flux (in vector representation), and
S = (S1(z,y),...,Sa(x,y))T is a local multi-group neutron source, for energy
groups g € {1,...,G}. The diffusion operator may be decomposed further into
group-preserving and group-mixing terms: I = Lp + L,;. The diagonal el-
ements contain a local diffusion operator, with absorption and fission of the
same energy group:

Lp = diag (VDlv LY, - kx—luzfl, VDAY 4 S — kX—GyEfG> .
ef f ef f

The nondiagonal elements of Ly, contain fission and scattering terms:

__ Xy
(L]\l)gg/ T keff

I/ng/ + Eggl .

Here, D, = Dy(x,y) represents the local diffusion coefficient for energy group
g, and Xo4(z,y), Xyig(z,y), and Xye(x,y) are the macroscopic position-
dependent absorption, fission, and scattering cross sections, respectively. The
weight factor v is due to neutron multiplication from the fission process, x4
is the integrated neutron spectrum from fission of group g, and kss is the
effective multiplication factor measuring criticality.

The solutions obey the piecewise open surface boundary conditions defined
by the neutron current density and scalar flux at the contours of the sheet. If
I' denotes the 2D volume and 01" the boundary, and if 017, are the boundary
pieces shown in Figure 34.1, then these conditions are

99 99
ox |, Toy oy

=0,
81—‘1‘0

¢g|ariy = ng‘az;g =0.

Since the problem has mirror symmetry with respect to the coordinate axes
with either z = 0 or y = 0, it is sufficient to determine only the solution in
the section with x,y > 0; the rest of it may be completed using the mentioned
reflection symmetries. A further constraint breaks the scale invariance of the
nonhomogeneous diffusion equation upon introduction of the energy release
(E'r) per unit time of the sheet, which implicitly correlates the multiplication
factor kcf; to the power through the total neutron flux:

P = FEg /F > Tpgdgdl
g9

As it stands, (34.1) is unlikely to be solved in closed analytical form. In
ordergtogintroducegagsimplificationgwhich nevertheless permits us to control
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Fig. 34.1. The 2D sheet with boundaries, internal interfaces, and locally homoge-
neous physical coefficients.

convergence in a strict mathematical sense, we may make use of the physical
resolution scale set by the inverse of the largest macroscopic cross-sectional
value of the problem under consideration, and segment the sheet into several
regions r € {1,..., R}, with linear dimension smaller than the mean free
path. In Figure 34.1, we showed for simplicity an example with four patches
disregarding this criterion, since our goal is to introduce the procedure and
show how it works. A further comment with respect to convergence is in order
here; mathematical convergence signifies that one may derive convergence
criteria which exactly evaluate the quality of the solution which differs from
the heuristic criteria usually used in numerical or stochastic methods.

We assume that the only neutron source is fission and, consequently, ignore
the source term (S(z,y) — 0). Besides the dependence on the specific energy
group, the physical coefficients are now “locally” homogeneous, i.e., constant
in a specific region 7:

Dg(x,y) _>D;a Eag(l‘?y) _>22g7

Yig(x,y) = Xtars Yog (T, y) — DS

The only quantity that preserves its original dependence on the coordinates
is the scalar neutron flux, which is determined in its analytical form for each
cgion (& " aking into account the modifications from above
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and on multiplication of the operator L from the left by the matrix D, that
contains the inverse multi-group diffusion constants of the respective region,
we can rewrite the simplified equation (34.1) in a more compact form for each
homogeneous region, namely,

(A— W5+ Wh,) & = 0. (34.2)

In addition to the boundary conditions, we have the piecewise open in-
terface conditions, which combine the solutions of adjacent regions (r and 7/,
respectively) into one unique solution for the whole problem. These conditions
are

D'V |, =D VS

Oy

@T|apzy — @T/

ory,

Except for the interface conditions, one may consider the total problem di-
vided into smaller similar rescaled problems, each of them having the same
solution structure but with different coefficients. Equation (34.2) together
with the boundary and interface conditions define the problem to be solved
analytically.

34.3 An Analytical Solution

The constant approximation for the physical parameters of each region to-
gether with a combination of a limited Laplace transform and a method called
the generalized integral transform technique (GITT) [C093, CoMi97], which
splits the differential operator into eigenvalues and polynomials, allow us to
apply standard methods of linear algebra and determine the analytical struc-
ture of the solution. Equation (34.2) is symmetric under the swap x <> y, so
we may apply the GITT to the x degree of freedom and convert the remaining
degree (y) by means of the Laplace transformation. As a first step towards
the decomposition of (34.2), the scalar flux may be replaced by an expansion

of the form
Z ggz 775”

If there were only one energy group and the problem were one dimensional,
then (34.2) would assume the form of a Sturm—Liouville problem. Hence, we
may think of the terms £, (z) as representing a linearly independent functional
basis which, because of similarity of the structure of the equations, may be de-
termined from the auxiliary problem, i.e., the Sturm-Liouville problem. The
principal idea of GITT is then to substitute differential operators by eigenval-
ues of that auxiliary problem with known analytical solutions. This auxiliary
problemygsatisfiespthegsamegboundaryy conditions as the original problem in
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order to minimize the dimension of the functional basis (the eigenfunctions)
it supplies for each eigenvalue. More specifically, the solutions of the Sturm-—
Liouville problem with nonzero eigenvalues \; = % # 0 satisfy the same

boundary conditions as the total problem, that is,
(ax)2£lr + >\22§f =Y, aacf“ar = 07 gﬂbr =0.

In order to adjust the solutions at the interface and take into account de-
viations of the interface conditions from the boundary conditions of the total
problem, a nonorthogonal but linearly independent solution of the Sturm-—
Liouville problem with zero eigenvalue (A9 = 0) is added. Thus, the structure
of the solution is the same as the one for a totally homogenized problem ex-
cept for an additional linear function with coefficients to be determined from
the boundary or interface conditions. Note that, by this procedure, interfaces
and boundaries are determined with the same technique. The orthogonality
property of the basis of the subspace (with nonzero eigenvalue) offers a way
to decouple the equation into a set of independent equations. Next, the or-
thogonal basis is the same for all energy groups, so that the coefficients that
differentiate the solutions for each energy group are absorbed in the n func-
tions.

The differential operator with respect to y may be eliminated by the use
of the limited Laplace transform L"[n(y)] = 7"(s), defined within the limits
of each region. Then the derivative term is

LT[(3y)*n(y)] = s*7" + sT7 + 17,

which substitutes all terms containing degrees of freedom along y. Here, the
T's play a role analogous to that of the linear functions of the Sturm—Liouville
problem and take care of the matching of the solutions at the boundaries and
interfaces. Upon insertion of the expansion and application of the Laplace
transformation, we arrive at an equation that, in component notation for Wp
and Wy, is of the form

o)

T 2 ~ ~
Z (52 = (A" - (W};)g) Tgs + Z(W}nw)gg’n;/i + 8T +Tgoi | & =0
i=0 o

We may now use the projection operator f(fr dz[¢]] with i # 0 to decom-
pose equation (34.2) into a set of separate equations, which depend only on
the y-dual variable s. For convenience, we introduce the notation
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T+ Tg0; =Yg,

b
/ §;&idr = 6;;N] fori,j #0,

b,
/ §;&odr = 6;; A% for j #0,

br
/ &pépdx = BT,

which modifies the equation set into a system for each j with generic structure
(rows and columns refer to the energy groups)

e o o - o

e o 0 O

L] O L] O 0 + s
00 .0

e 0 O 0 [ ] ° )

where the blobs indicate nonzero elements and all other components are zero.
In terms of the specific expressions, the resulting equation system is

A;( (82 - (W?") ngO + Z WM 99 ng’O + Y;O)
g’

+N;<(82_(’\;)2_(WT) )779]+ZWM 99Ty j + Yy )ZO‘

Let W7 be the matrix in the equation above, containing s2, )\f,W}, and
Wi,. Using the linear independence, the solutions 7y, may be determined
simply by Cramer’s rule; that is,

o det(Wy,)
ot = et (W)’

where W7, signifies the modified matrix with the gth column replaced by the
inhomogeneity Y] = (Y, .. YGz) of the matrix equation. The Laplace-
transformed factors are ratlonal functions in s, so that the solution may be
obtained from the Heaviside expansion, where the sum runs over the roots of
det(W?) in s,

[
T. = —_—_— esjy .
i) = 2 2 Jet(W1)
8§=8;
Recalling that the solutions n,(y) still contain terms due to T(% 1 from the
hmlted Laplace transform we ehmlnate these unknowns using the boundary
and interface con S in y a ategrating out the second dimension in x:
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r r anri r r’ (5)777";
> (Dg/ﬁi dzx 8—;(@) ~ D /gi dzx 8; (aw)> =0,
</ & dx ng,(b /fr dx ngz Ay )> =0.

The remaining missing pieces are the solutions & of the Sturm-Liouville prob-
lem with zero eigenvalue. For the solutions constituting an orthogonal basis
per region, the boundary conditions are the same as for the total problem
with boundary 010U 01, U015 U0I,. The only terms that are needed to
match the local solutions at the interfaces are the linear terms. Thus,

€T ) )
Z(DZ o) / n?;id.v) D, 50 =0 (ar) / ody =0,

&5(00) [y =3 (& o) [ian) =0

(3

Except for keyy, the solution is known in closed analytical form. Since the
multiplication factor enters the solution ¢ in a way that in general does not
permit inversion, the integral that relates the power of the sheet to the neutron
flux may not be cast into a form that allows us to solve for k.ss explicitly, so
that one has to resort to a numerical procedure, which takes place at the end of
the solving procedure. Thus the only nonanalytical step is the determination
of the numerical value of k.

34.4 Conclusion

This chapter presented a new method, which generates analytical solutions
for the globally heterogeneous problem of neutron diffusion in two dimen-
sions. The principal steps employed are the Laplace transform and the GITT.
Motivated by recent developments in reactor concepts, we developed an effec-
tive procedure which permits to analyze in an analytical way what changes
in the reactor core geometry or composition occur and can lead to an opti-
mized setup. Since the only quantity determined by numerical means is the
effective multiplication factor, the quality of the solution may be controlled
by mathematical convergence criteria. A detailed analysis compares the error
from numerical methods such as the finite difference method, which typically
scales with the step size, to our procedure with an error that depends on the
truncation of the expansion and the region size determined by a scale which
may be determined from the largest macroscopic cross section present in the
problem.

Although algebraic manipulations are typically slower in execution than
numerical procedures, in the present approach, because the homogenized
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global problem has the same solution as the rescaled smaller problem, re-
stricted to a specific region except for the differences imposed by the interface
conditions, which are taken care of by a linear correction of the solution, the
structure of the solution is the same for all regions and can also be applied to
the outer regions which are limited partially by the outer boundary 9I". Once
the number of energy groups and regions is defined, and further the truncation
of the expansion is determined, then one may prepare a library of solutions
using the proposed method. The only task to be executed then is to determine
numerically the GITT eigenvalues and coefficients from the Laplace transform
and solve the power integral for the effective multiplication factor. We believe
that in order to get a comparable precision with numerical or stochastic pro-
cedures will be more time consuming, especially if modifications in geometry
and material composition are to be examined.

References

[Co93] Cotta, R.M.: Integral Transforms in Computational Heat and Flow, CRC
Press, Boca Raton, FL (1993).

[CoMi97] Cotta, R.M., Mikhailov, M.D.: Heat Conduction: Lumped Analysis, In-
tegral Transforms, Symbolic Computation, McGraw-Hill, Chichester, UK
(1997).

[He05] Heinen, I.R.: Master thesis. Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil (2005) (Portuguese).

[Le05] Leppénen, J.: A new assembly-level Monte Carlo neutron transport code
for reactor physics calculations, in Mathematics and Computation, Su-
percomputing, Reactor Physics and Nuclear and Biological Applications,
American Nuclear Society, LaGrange Park, IL (2005) (on CD-ROM).

[Se07] Sekimoto, H.: Nuclear Reactor Theory. Part II, COE-INES Tokyo Insti-
tute of Technology (2007).

ol Lal Zyl_i.lbl




Index

L*-projection operator, 267

Abel integral equation, 221

acceleration signal, 239

Adomian polynomials, 121

advection, 341

advection—diffusion equation, 33, 142

aerodynamical global optimization of
shape, 281

air pollution, 34

albedo boundary conditions, 301

algebraic multi-grid preconditioner, 357

alternating descent method, 65

angle of repose, 92

anisotropic Sobolev space, 104, 214, 224

anisotropically graded meshes, 204

ant colony optimization, 327

Arnoldi algorithm, 353

atmospheric pollutant dispersion, 141

baffle-reflector system, 302
Banach—Steinhaus theorem, 167
band matrix, 354

bending energy, 262

bioreactor, 21

bisection method, 167

black box functions, 131

Bohr radius, 313

Boltzmann equation, 361
Boltzmann scattering operator, 313
boundary integral method, 103
boundary layers, 2

bulk concentration, 162

Burton—Miller method, 103

Caputo derivative, 216
Carafoli analogy, 282
Carathéodory conditions, 322
Cauchy singular kernel, 248
Cauchy’s residue theorem, 247
cavitation, 233

Cayley representation, 14
centroid, 340

cerebrospinal fluid, 193
characteristic impedance, 246
characteristic waves, 246
Chebychev polynomials, 204
chirp, 236

chlorophyll concentration, 327
coarse meshes, 197

coefficient control, 55
collocation, 167

compact embedding theorem, 323

composite material, 41
concavity criterion, 330

concentration turbulent fluxes, 142

condition monitoring, 233
condition numbers, 163

conforming finite element procedure,

263
constrained problems, 131

continuous wavelet transform, 234

contractive functions, 12

convective boundary layer, 34, 145

convolution quadrature, 103
cost functional, 66
Coulomb friction, 93
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coupling matrices, 195
Cramer’s rule, 366

Darcy’s law, 194

dense dispersed media, 189
dependent scattering, 190

dielectric tensor, 243

diffusion equation, 194
diffusion-reaction equations, 22
dilute dispersed media, 187

discrete control problem, 61

discrete penalty methods, 136
discretization methods, 105
discretization of control problems, 55
discretization of integral operators, 351
dispersion equation, 41

distributed memory computing, 352
disturbance velocities, 281
double-layer potential, 104

dual wavelet, 237

dynamic penalty methods, 134

eddy diffusivity, 143

effective multiplication factor, 301
effective radiative properties, 188
eigenvalue problem, 301

elastic plate layer-potentials, 302
electron transport equation, 312
energy discretization, 301

energy eddies, 34
Engquist—Osher scheme, 84

error bounds, 1

Euler-Lagrange equations, 262
eutrophication, 21

exact penalty property, 134
exponential-integral function, 353
exterior Neumann problem, 103

filter methods, 138

fine meshes, 197

finite element method, 194, 263

finite volume method, 91

finite-rank operators, 351

fixed-point algorithm, 27

flying configuration, 281

focusing waves, 346

Fokker—Plank pencil beam equation,
311

Fourier transform, 245

Fox H-function, 215

fractional diffusion equation, 213

Fréchet differentiable function, 61

Fredholm equation of the second kind,
1, 173

Fredholm equations of the first kind,
161

Fredholm operator, 207

fundamental solution, 105, 223

Garding inequality, 205

Garding’s inequality, 220

Galerkin approximation, 1

Galerkin discretization techniques, 263

Galerkin method, 103

Galerkin scheme, 2

Gateaux derivative, 77

Gauss divergence formula, 219

generalized eigenvalue problem, 196

generalized integral transform tech-
nique, 33

Germain compatibility conditions, 283

global optimal penalty methods, 134

gradient transport hypothesis, 34

Green’s formula, 217

Green’s function, 205

Green’s kernel, 253

guided wave propagation, 41

gyrotropic medium, 243

Holder regularity, 234

Hadamard finite part, 105

Hamburger—Lowner mixed interpolation
problem, 11

Hankel function, 205

Helmholtz decomposition, 44, 271

Helmholtz equation, 203

Hessenberg form, 353

high-order algorithms, 152

Hill’s function, 162

homogenization of radiation transfer,
183

hybrid Galerkin method, 203

hyperbolic conservative schemes, 83

ill-conditioned matrix, 162
ill-posed equations, 162
implicit function theorem, 164
inf-sup condition, 230
inhomogeneous turbulence, 143



interface conditions, 364
inviscid Burgers equation, 65
inviscid supersonic flow, 281
iterative method of order p, 121

Krylov eigensolvers, 356
Krylov—Schur method, 356
Kulkarni two-grid method, 180

Lowner—Nevanlinna problem, 11
Lagrange multiplier methods, 137
Lamb guided waves, 42

Lamé constants, 43

Laplace equation, 203

Laplace transform, 301
Lax—Friedrichs scheme, 84
Lax—Milgram lemma, 230
Legendre polynomials, 312

limit constrained problem, 265
linearized Burgers equation, 77
linked interpolation technique, 274
local diffusion coefficient, 362
locking effect, 265

logarithmic kernel, 205, 248

mass balance equation, 194
Maxwell equations, 245

mean flow, 142

Mexican hat wavelet, 294
Michaelis—Menten kinetics, 22
minimizers, 67

MITC elements, 268

modified shear energy, 277
Morlet wavelet, 293

mother wavelet, 293

motion of the spinal cord, 193
multi-group diffusion equation, 361
multigroup diffusion theory, 301
multiphase media, 183
multipoint iterative methods, 121

N-layered media, 41
Navier—Stokes layer solutions, 282
Neumann trace operator, 203
neutron diffusion, 301

neutron transport equation, 361
Nevanlinna functions, 11
Nevanlinna—Pick problem, 14
Newton’s methods, 121
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non-Fickian closure, 33

nonconservative problems, 91

nonlinear dissipative structures, 339

nonlinear functional parabolic equa-
tions, 321

nonlinear programming problem, 132

nonresonant medium, 244

nonuniform grids, 354

numerical software, 352

Nystrom approximation method, 173

Nystrom operator, 253

Nystrom two-grid method, 175

objective functions, 132
olfactory system of frogs, 161
opaque dispersed phases, 189
optimal control, 23, 65

optimal design, 55, 281
optimality condition, 25
optimum-optimorum theory, 286
orthogonal projection, 176

parallel computers, 352

partial waves, 45

penalty function, 133

penalty methods, 131

penalty parameter, 133

periodic homogenization, 58
perturbed diffusion equation, 361
Pick matrix, 14

piecewise constant approximation, 162
piecewise polynomial collocation, 152
planar reflection, 345

Plancherel formula, 298

planetary boundary layer, 33, 141
plate finite element methods, 261
pollutant dispersion, 33

polynomial splines, 152

pulse, 339

quadratic inverse interpolation, 49
quasi-optimal error estimates, 230

radiation intensity, 184
radiation transfer, 183

ray tracing, 346
reconstruction formula, 299
reconstruction procedure, 15
reduction operator, 266
refuse penalty methods, 136
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Reissner-Mindlin plate model, 261
resolvent operator, 2

resolving kernel, 187

resonant medium, 244
Riemann—Liouville derivative, 217
Riesz—Herglotz theorem, 11
Runge-Kutta scheme, 95

saturated porous medium, 194
Savage-Hutter model, 91
scattering phase function, 187
Schur algorithm, 15

Schur decomposition, 353
Schwarz—Christoffel identity, 13
screened Rutherford scattering, 312
sediment layer, 92

sediment layer profile, 96
Shannon entropy, 17

shear energy, 262

shock discontinuities, 65
single-layer operator, 226
single-layer potential, 203, 219
singular integral operator, 204
smoothing transformation, 152
Sobolev space, 321

space discretization, 28
spectral boundary element method, 207
spectral coefficients, 284
spectral computations, 351
spectral radiance, 329

spurious modes, 267

state reconstruction, 93

static penalty methods, 134
stopping criterion, 130

strip antennas, 243
Sturm-Liouville problem, 364
submarine avalanches, 91
syringomyelia, 193
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systems of nonlinear equations, 121

tail clipping, 162

Tikhonov norm, 327

Tikhonov regularization, 166

time semi-discretization, 26
time-dependent wavelet transform, 297
time-fractional diffusion equation, 223
transient acoustic radiation, 103
trapezium method, 196

trapezoidal rule, 230

Traub’s method, 129

turbulence, 34

two-grid method, 173, 253

uniform Holder exponent, 234

van Dyke principle, 282

vanishing viscosity, 69

viscosity parameter, 65

viscous Burgers equation, 65

Vitali’s theorem, 324

Volterra equation of the second kind,
165

Volterra integro-differential equations,
151

Volterra property, 324

wave confinement, 339

wave equation, 103, 291, 343

wavelet transform, 291

wavelets, 233

weak aerodynamics/structure interac-
tion, 281

weak solution, 94

weakly singular integral operators, 1

weakly singular kernel, 353

weighted L2-spaces, 205

windowed Fourier transform, 293



